# some synthetic data
N<- 100
set.seed(123)
x<- matrix(runif(2*N), N,2)
theta<- .2
Sigma<- Matern( rdist(x,x)/theta , smoothness=1.0)
Sigma.5<- chol( Sigma)
sigma<- .1
M<-5 # Five (5) independent spatial data sets
F.true<- t( Sigma.5)%*% matrix( rnorm(N*M), N,M)
Y<- F.true + sigma* matrix( rnorm(N*M), N,M)
# find MLE for lambda with range and smoothness fixed in Matern for first data set
obj<- mKrig.MLE( x,Y[,1], Covariance="Matern", theta=.2, smoothness=1.0)
obj$summary # take a look
fit<- mKrig( x,Y[,1], Covariance="Matern", theta=.2, smoothness=1.0, lambda= obj$lambda.best)
#
# search over the range parameter and use all 5 replications for combined likelihood
par.grid<- list( theta= seq(.1,.25,,6))
# default starting value for lambda is .02 subsequent ones use previous optimum.
obj<- mKrig.MLE( x,Y, Covariance="Matern",lambda=c(.02,rep(NA,4)), smoothness=1.0, par.grid=par.grid)
Run the code above in your browser using DataLab