Learn R Programming

fields (version 6.8)

RMprecip: Monthly total precipitation (mm) for August 1997 in the Rocky Mountain Region and some gridded 4km elevation data sets (m).

Description

RMprecip is a useful spatial data set of moderate size consisting of 806 locations. See www.image.ucar.edu/Data for the source of these data. PRISMelevation and RMelevation are gridded elevations for the continental US and Rocky Mountain region at 4km resolution. Note that the gridded elevations from the PRISM data product are different than the exact station elevations. (See example below.)

Arguments

Details

The binary file RData.USmonthlyMet.bin can be downwloaded from http://www.image.ucar.edu/Data/US.monthly.met and also includes information on its source.

# explicit source code to create the RMprecip data dir <- "" # include path to data file load(paste(dir, "RData.USmonthlyMet.bin", sep="/") #year.id<- 1963- 1895 year.id<- 103 #pptAUG63<- USppt[ year.id,8,] loc<- cbind(USpinfo$lon, USpinfo$lat) xr<- c(-111, -99) yr<- c( 35, 45) station.subset<- (loc[,1]>= xr[1]) & (loc[,1] <= xr[2])="" &="" (loc[,2]="">= yr[1]) & (loc[,2]<= yr[2])="" ydata<-="" usppt[="" year.id,8,station.subset]="" ydata="" <-="" ydata*10="" #="" cm="" -=""> mm conversion xdata<- loc[station.subset,] dimnames(xdata)<- list( USpinfo$station.id[station.subset], c( "lon", "lat")) xdata<- data.frame( xdata) good<- !is.na(ydata) ydata<- ydata[good] xdata<- xdata[good,] test.for.zero.flag<- 1 test.for.zero( unlist(RMprecip$x), unlist(xdata), tag="locations") test.for.zero( ydata, RMprecip$y, "values")

Examples

Run this code
# this data set was created  the 
# historical data  taken from 
# Observed monthly precipitation, min and max temperatures for the coterminous US 
# 1895-1997
# NCAR_pinfill 
# see the Geophysical Statistics Project datasets page for the supporting functions 
# and details. 

# plot 
quilt.plot(RMprecip$x, RMprecip$y)
US( add=TRUE, col=2, lty=2)

# comparison of station elevations with PRISM gridded values

data(RMelevation)

interp.surface( RMelevation, RMprecip$x)-> test.elev

plot( RMprecip$elev, test.elev, xlab="Station elevation", 
ylab="Interpolation from PRISM grid")
abline( 0,1,col="blue")

# some differences  with high elevations probably due to complex
# topography!

#
# view of Rockies looking from theSoutheast

save.par<- par(no.readonly=TRUE)

par( mar=c(0,0,0,0))

# fancy use of persp with shading and lighting.
persp( RMelevation, theta=75, phi= 15, 
          box=FALSE, axes=FALSE, xlab="", ylab="", 
         border=NA,
         shade=.95, lphi= 10, ltheta=80,
         col= "wheat4", 
         scale=FALSE, expand=.00025)

# reset graphics parameters and a more conventional image plot.
par( save.par)
image.plot(RMelevation, col=topo.colors(256))
US( add=TRUE, col="grey", lwd=2)
title("PRISM elevations (m)")

Run the code above in your browser using DataLab