#
Tps( ChicagoO3$x, ChicagoO3$y)-> obj # default is to find lambda by GCV
summary( obj)
gcv.Krig( obj)-> out
print( out$lambda.est) # results agree with Tps summary
sreg( rat.diet$t, rat.diet$trt)-> out
gcv.sreg( out, tol=1e-10) # higher tolerance search for minimum
## Not run:
# # a simulation example
# x<- seq( 0,1,,150)
# f<- x**2*( 1-x)
# f<- f/sqrt( var( f))
#
# set.seed(123) # let's all use the same seed
# sigma<- .1
# y<- f + rnorm( 150)*sigma
#
# Tps( x,y)-> obj # create Krig object
#
# hold<- hold2<- matrix( NA, ncol=6, nrow=200)
#
# for( k in 1:200){
# # look at GCV estimates of lambda
# # new data simulated
# y<- f + rnorm(150)*sigma
# # save GCV estimates
# lambdaTable<- gcv.Krig(obj, y=y, give.warnings=FALSE)$lambda.est
# hold[k,]<- lambdaTable[1,]
# hold2[k,]<- lambdaTable[6,]
# }
# matplot( cbind(hold[,2], hold2[,2]),cbind( hold[,4],hold2[,4]),
# xlab="estimated eff. df", ylab="sigma hat", pch=16, col=c("orange3", "green2"), type="p")
# yline( sigma, col="grey", lwd=2)
#
# ## End(Not run)
Run the code above in your browser using DataLab