dgengamma(x, mu=0, sigma=1, Q, log = FALSE)
pgengamma(q, mu=0, sigma=1, Q, lower.tail = TRUE, log.p = FALSE)
qgengamma(p, mu=0, sigma=1, Q, lower.tail = TRUE, log.p = FALSE)
rgengamma(n, mu=0, sigma=1, Q)
Hgengamma(x, mu=0, sigma=1, Q)
hgengamma(x, mu=0, sigma=1, Q)length(n) > 1, the length is
taken to be the number required.dlndgengamma gives the density, pgengamma gives the distribution
function, qgengamma gives the quantile function, rgengamma
generates random deviates, Hgengamma retuns the cumulative hazard
and hgengamma the hazard.dgengamma.orig, for the sake of completion and
compatibility with other software - this is implicitly restricted to
Q>0 (or k>0 in the original notation). The parameters of
dgengamma and dgengamma.orig are related as
follows.
dgengamma.orig(x, shape=shape, scale=scale, k=k) =
dgengamma(x, mu=log(scale) + log(k)/shape, sigma=1/(shape*sqrt(k)), Q=1/sqrt(k))
The generalized gamma distribution simplifies to the gamma, log-normal
and Weibull distributions with the following parameterisations:
lcl {
dgengamma(x, mu, sigma, Q=0) = dlnorm(x, mu, sigma)
dgengamma(x, mu, sigma, Q=1) = dweibull(x, shape=1/sigma, scale=exp(mu))
dgengamma(x, mu, sigma, Q=sigma) = dgamma(x, shape=1/sigma^2, rate=exp(-mu) / sigma^2)
}
The properties of the generalized gamma and its applications to
survival analysis are discussed in detail by Cox (2007).
The generalized F distribution GenF extends the
generalized gamma to four parameters.=0$.>GenGamma.orig, GenF,
Lognormal, GammaDist, Weibull.