Learn R Programming

flowPlots (version 1.20.0)

computePFDGroupStatsList: Compute Group Stats on PFD Data to Be Used In a Legend

Description

This function can be used with ternaryplot() to add PFD group stats to, say, the legend. The stats computed are group size (N), pfd group mean, and pfd group standard deviation.

Usage

computePFDGroupStatsList(groupPFDDataList, pfdValues=1:3, numDigitsMean=3, numDigitsSD=2)

Arguments

groupPFDDataList
one list item per group, each list item contains a matrix of PFD percentages; the rows are subjects, and the columns are pfd categories.
pfdValues
vector of the PFD values that the columns in each matrix in the groupPFDDataList represent; eg. 1:3 for (PFD1,PFD2,PFD3).
numDigitsMean
return a mean rounded to this number of digits
numDigitsSD
return a standard deviation rounded to this number of digits

Value

the size of the group, the mean PFD, and the standard deviation of the PFD.

See Also

StackedData, pfdData

Examples

Run this code
## Load PFD data to plot
data(pfdDF)
pfdDataSubset = subset(pfdDF, stim=="LPS" & concGroup==3 & cell=="mDC")

## Prepare the PFD Data for a call to ternaryplot()
ternaryData = makeTernaryData(pfdDataSubset, 1, 2, 3:4)
colnames(ternaryData) = c("PFD1", "PFD2", "PFD3-4")

## Make a ternary plot
library(vcd)
ternaryplot(ternaryData, cex=.5, col=as.numeric(pfdDataSubset$group)*2, main="Stimulation = LPS, 
   Concentration Group = 3, Cell = mDC")

## Compute Group Stats to use in the legend of the ternary plot
adultPFDData = subset(pfdDataSubset, group=="adult", select=c(PFD1:PFD3))
neoPFDData = subset(pfdDataSubset, group=="neonate", select=c(PFD1:PFD3))
groupPFDDataList = list(adultPFDData, neoPFDData)

## Specifically, compute the PFD Group Stats List
pfdGroupStatsList = computePFDGroupStatsList(groupPFDDataList, pfdValues=1:3, numDigitsMean=3, 
   numDigitsSD=2)
groupNames = c("Adults","Neonates")

## Create group names for the legend based on the PFD Group Stats List
legendNames = legendPFDStatsGroupNames(pfdGroupStatsList,groupNames)
grid_legend(0.8, 0.7, pch=c(20,20), col=c(2,4), legendNames, title = "Group (n), mean/sd:", 
   gp=gpar(cex=.8))

Run the code above in your browser using DataLab