### Additive model with 1 covariate ###
data(dataAdditive)
modAdd<-additivePenal(Surv(t1,t2,event)~cluster(group)+var1+slope(var1),
correlation=TRUE,data=dataAdditive,n.knots=8,kappa1=10000,
hazard="Splines")
### Joint model (recurrent and terminal events) with 2 covariates ###
### on a simulated dataset ###
data(readmission)
modJoint_gap<-frailtyPenal(Surv(time,event)~cluster(id)+sex+as.factor(dukes)
+as.factor(charlson)+terminal(death),
formula.terminalEvent=~sex+as.factor(dukes)+as.factor(charlson),
data=readmission,n.knots=14,kappa1=9550000000,kappa2=1410000000000,
Frailty=TRUE,joint=TRUE,recurrentAG=FALSE,hazard="Splines")
### Nested model (or hierarchical model) with 2 covariates ###
data(dataNested)
modClu<-frailtyPenal(Surv(t1,t2,event)~cluster(group)+
subcluster(subgroup)+cov1+cov2,Frailty=TRUE,data=dataNested,
n.knots=8,kappa1=50000,hazard="Splines")
### Semi-parametrical Shared model ###
data(readmission)
frailtyPenal(Surv(t.start,t.stop,event)~as.factor(sex)+as.factor(dukes)+
as.factor(charlson)+cluster(id),data=readmission, Frailty=TRUE,
n.knots=6,kappa1=5000,recurrentAG=TRUE,cross.validation=TRUE,
hazard="Splines")
### Parametrical Shared model ###
data(readmission)
frailtyPenal(Surv(t.start,t.stop,event)~as.factor(sex)+as.factor(dukes)+
as.factor(charlson)+cluster(id),data=readmission, Frailty=TRUE,
hazard="Piecewise-per",nb.int=6)Run the code above in your browser using DataLab