The function LG defines the logarithmic distribution, a one parameter distribution, for a gamlss.family object to be
used in GAMLSS fitting using the function gamlss(). The functions dLG, pLG, qLG and rLG define the
density, distribution function, quantile function
and random generation for the logarithmic , LG(), distribution.
The function ZALG defines the zero adjusted logarithmic distribution, a two parameter distribution, for a gamlss.family object to be
used in GAMLSS fitting using the function gamlss(). The functions dZALG, pZALG, qZALG and rZALG define the
density, distribution function, quantile function
and random generation for the inflated logarithmic , ZALG(), distribution.
LG(mu.link = "logit")
dLG(x, mu = 0.5, log = FALSE)
pLG(q, mu = 0.5, lower.tail = TRUE, log.p = FALSE)
qLG(p, mu = 0.5, lower.tail = TRUE, log.p = FALSE, max.value = 10000)
rLG(n, mu = 0.5)
ZALG(mu.link = "logit", sigma.link = "logit")
dZALG(x, mu = 0.5, sigma = 0.1, log = FALSE)
pZALG(q, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
qZALG(p, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
rZALG(n, mu = 0.5, sigma = 0.1)The function LG and ZALG return a gamlss.family object which can be used to fit a
logarithmic and a zero inflated logarithmic distributions respectively in the gamlss() function.
defines the mu.link, with logit link as the default for the mu parameter
defines the sigma.link, with logit link as the default for the sigma parameter which in this case
is the probability at zero.
vector of (non-negative integer)
vector of positive means
vector of probabilities at zero
vector of probabilities
vector of quantiles
number of random values to return
logical; if TRUE, probabilities p are given as log(p)
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
valued needed for the numerical calculation of the q-function
Mikis Stasinopoulos, Bob Rigby
The parameterization of the logarithmic distribution in the function LG is
$$P(Y=y | \mu) = \alpha \mu^y / y$$
where
for \(y=1,2,3,...\) with \(0<\mu<1\) and $$\alpha = - [\log(1-\mu)]^{-1}.
$$
see pp 474-475 of Rigby et al. (2019).
For the zero adjusted logarithmic distribution ZALG which is defined
for \(y=0,1,2,3,...\)
see pp 492-494 of Rigby et al. (2019).
Johnson, Norman Lloyd; Kemp, Adrienne W; Kotz, Samuel (2005). "Chapter 7: Logarithmic and Lagrangian distributions". Univariate discrete distributions (3 ed.). John Wiley & Sons. ISBN 9780471272465.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, tools:::Rd_expr_doi("10.1201/9780429298547"). An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, tools:::Rd_expr_doi("10.18637/jss.v023.i07").
Rigby, R. A. and Stasinopoulos D. M. (2010) The gamlss.family distributions, (distributed with this package or see https://www.gamlss.com/)
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. tools:::Rd_expr_doi("10.1201/b21973")
(see also https://www.gamlss.com/).
gamlss.family, PO, ZAP
LG()
ZAP()
# creating data and plotting them
dat <- rLG(1000, mu=.3)
r <- barplot(table(dat), col='lightblue')
dat1 <- rZALG(1000, mu=.3, sigma=.1)
r1 <- barplot(table(dat1), col='lightblue')
Run the code above in your browser using DataLab