The function RG
defines the reverse Gumbel distribution, a two parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting using the
function gamlss()
.
The functions dRG
, pRG
, qRG
and rRG
define the density, distribution function, quantile function and random
generation for the specific parameterization of the reverse Gumbel distribution.
RG(mu.link = "identity", sigma.link = "log")
dRG(x, mu = 0, sigma = 1, log = FALSE)
pRG(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
qRG(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rRG(n, mu = 0, sigma = 1)
RG()
returns a gamlss.family
object which can be used to fit a Gumbel distribution in the gamlss()
function.
dRG()
gives the density, pGU()
gives the distribution
function, qRG()
gives the quantile function, and rRG()
generates random deviates.
Defines the mu.link
, with "identity" link as the default for the mu parameter. other available link is "inverse", "log" and "own"
Defines the sigma.link
, with "log" link as the default for the sigma parameter, other links are the "inverse", "identity" and "own"
vector of quantiles
vector of location parameter values
vector of scale parameter values
logical; if TRUE, probabilities p are given as log(p).
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
vector of probabilities.
number of observations. If length(n) > 1
, the length is
taken to be the number required
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
The specific parameterization of the reverse Gumbel distribution used in RG
is
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, tools:::Rd_expr_doi("10.1201/9780429298547"). An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, tools:::Rd_expr_doi("10.18637/jss.v023.i07").
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. tools:::Rd_expr_doi("10.1201/b21973")
(see also https://www.gamlss.com/).
gamlss.family
plot(function(x) dRG(x, mu=0,sigma=1), -3, 6,
main = "{Reverse Gumbel density mu=0,sigma=1}")
RG()# gives information about the default links for the Gumbel distribution
dat<-rRG(100, mu=10, sigma=2) # generates 100 random observations
# library(gamlss)
# gamlss(dat~1,family=RG) # fits a constant for each parameter mu and sigma
Run the code above in your browser using DataLab