Learn R Programming

ganDataModel (version 2.0.1)

Build a Metric Subspaces Data Model for a Data Source

Description

Neural networks are applied to create a density value function which approximates density values for a data source. The trained neural network is analyzed for different levels. For each level metric subspaces with density values above a level are determined. The obtained set of metric subspaces and the trained neural network are assembled into a data model. A prerequisite is the definition of a data source, the generation of generative data and the calculation of density values. These tasks are executed using package 'ganGenerativeData' .

Copy Link

Version

Install

install.packages('ganDataModel')

Monthly Downloads

232

Version

2.0.1

License

GPL (>= 2)

Maintainer

Werner Mueller

Last Published

December 19th, 2025

Functions in ganDataModel (2.0.1)

dmBuildMetricSubspaces

Build metric subspaces for a level
dmPlotMetricSubspaceParameters

Specify plot parameters for metric subspaces for a level
dmPlotEvaluateDataSourceParameters

Specify plot parameters for evaluated data source
dmCalculateDensityValue

Calculate a density value for a data record
dmGetContainedInMetricSubspaces

Get metric subspaces in which a data record is contained
dmGetMetricSubspaceProperties

Get metric subspace properties for a level
dmRead

Read a data model and generative data
dmPlotMetricSubspaces

Create an image file for metric subspaces
dmRemoveMetricSubspaces

Remove metric subspaces for a level
dmGetLevels

Get levels for metric subspaces
ganDataModel-package

Build a Metric Subspaces Data Model for a Data Source
dmReset

Reset API
dmTrain

Train a neural network which approximates density values for a data source