dgig(x, lambda = 1, chi = 1, psi = 1)pgig(q, lambda = 1, chi = 1, psi = 1, ...)
qgig(p, lambda = 1, chi = 1, psi = 1, method = c("integration", "splines"),
spline.points = 200, subdivisions = 200,
root.tol = .Machine$double.eps^0.5,
rel.tol = root.tol^1.5, abs.tol = rel.tol, ...)
rgig(n = 10, lambda = 1, chi = 1, psi = 1, envplot = F, messages = F)
ESgig(p, lambda = 1, chi = 1, psi = 1, ...)
Egig(lambda, chi, psi, func = c("x", "logx", "1/x", "var"), check.pars = T)
integrate when computing
the the distribution function pgig.integrate.integrate.splines instead of integration.uniroot.TRUE error messages from rgig are printed.TRUE an plot of the envelope is shown.x is the expected value (default), log x returns the
expected value of the logarithm of x, 1/x returns the
TRUE the parameters are checked first.ESgig to qgig.dgig gives the density,
pgig gives the distribution function,
qgig gives the quantile function,
ESgig gives the expected shortfall,
rgig generates random deviates and
Egig gives the expected value
of either x, 1/x, log(x) or the variance if func equals var.qgig computes the quantiles either by using the uniroot afterwards. The rel.tol, abs.tol, root.tol and spline.points.
rgig uses the random generator from the S-Plus library QRMlib
(see fit.ghypuv, fit.ghypmv, integrate,
unirootdgig(1:40,lambda=10,chi=1,psi=1)
qgig(1e-5,lambda=10,chi=1,psi=1)
Egig(lambda=10,chi=1,psi=1,func="x")
Egig(lambda=10,chi=1,psi=1,func="var")
Egig(lambda=10,chi=1,psi=1,func="1/x")Run the code above in your browser using DataLab