abar2chipsi(alpha.bar, lambda, eps = .Machine$double.eps) besselM3(lambda = 9/2, x = 2, logvalue = FALSE)
check.data(data, case = c("uv", "mv"), na.rm = T, fit = TRUE, dim = NULL)
check.gig.pars(lambda, chi, psi)
                        
check.norm.pars(mu, sigma, gamma)
check.opt.pars(opt.pars)
fit.ghyp(object, llh = 0, n.iter = 0, converged = FALSE, error.code = 0, 
         error.message = "", parameter.variance, fitted.params, aic)
         
gh.model(lambda, chi, psi, gamma) 
identity(x)
t.transform(lambda)    
integrate.moment.gig(x, moment = 1, ...)
integrate.moment.ghypuv(x, moment = 1, ...)  
internal.dghyp(x, lambda = 1, chi = 1, psi = 1, alpha.bar = NULL, 
               mu = 1, sigma = 1, gamma = 0, logvalue = F)
internal.dghypmv(x, lambda, chi, psi, mu, sigma, gamma, logvalue = F)  
mle.default(data, pdf, vars, opt.pars = rep(F, length(vars)), 
            transform = rep("identity", length(vars)), se = F, 
            na.rm = F, silent = FALSE, ...)
            
p.default(q,pdf,pdf.args,lower,...)
q.default(p, pdf, pdf.args, interval, p.lower, ...)
test.class.ghyp(object, case = c("ghypbase","ghypuv","ghypmv"))
llh.surface(obj,param=c("alpha.bar","lambda","mu","sigma","gamma"),
            x.seq=NULL,y.seq=NULL,x.range=c(0,1),y.range=c(0,1),
            n.grid=100, percent=FALSE,plot.it=TRUE)
abar2chipsi 
Convert besselM3 
Wrapper function for besselK.
check.data 
This function checks data for consistency.
  Only data objects of typ data.frame,
  matrix or numeric are accepted.
check.gig.pars 
Some combinations of the GIG parameters are not allowed. This 
  function checks whether this is the case or not. 
check.norm.pars 
This function simply checks if the dimensions match.
  
check.gig.pars 
Some combinations of the GIG parameters are not allowed. This 
  function checks whether the parameters are valid or not. 
check.opt.pars 
When calling the fitting routines (fit.ghypuv and fit.ghypmv)
  a named vector containing the parameters which should not be fitted can be passed. 
  By default all parameters will be fitted.
fit.ghyp 
This function is called by the functions
  fit.ghypuv and fit.ghypmv to create
  objects of class mle.ghypuv and 
  mle.ghypmv.
gh.model 
Check if the parameters denote a special case of the generalized hyperbolic
  distribution.
identity 
Identity function used in fit.ghypuv as a
  transformation function of certain parameters which have to be optimized numerically. 
t.transfrom 
Transformation  function used in fit.ghypuv for
  certain parameters which have to be optimized numerically. 
integrate.moment.gig 
This function is used when computing the conditional expectation
  of a generalized inverse gaussian distribution.
integrate.moment.ghypuv 
This function is used when computing the conditional expectation
  of a univariate generalized hyperbolic distribution.
internal.dghyp 
This function is used during the fitting procedure. Use dghyp 
  to compute the density of generalized hyperbolic distribution
  objects.
internal.dghypmv 
This function is used during the fitting procedure. Use dghyp 
  to compute the density of generalized hyperbolic distribution
  objects. 
  
mle.default 
This function serves as a generic function for maximum likelihood estimation.
  It is for internal use only. See fit.ghypuv which wraps this
  function. 
p.default 
A generic distribution function integrator given a density function.
  See pghyp for a wrapper of this
  function.
q.default 
A generic quantile function calculator given a density function. 
  See qghyp for a wrapper of this   function.
  
test.class.ghyp 
This function tests whether the object is of class
  ghypbase, ghypuv or
  ghypmv according to the argument case
  and states a corresponding error if not.
  
llh.surface 
This function is intended to draw surface plots of the log-likelihood function 
  either over a one or two-dimensional parameter space.