# \donttest{
# Example values
q_vals <- c(0.2, 0.5, 0.8)
alpha_par <- 2.0
beta_par <- 3.0
lambda_par <- 1.5
# Calculate CDF P(X <= q)
probs <- pekw(q_vals, alpha_par, beta_par, lambda_par)
print(probs)
# Calculate upper tail P(X > q)
probs_upper <- pekw(q_vals, alpha_par, beta_par, lambda_par,
lower_tail = FALSE)
print(probs_upper)
# Check: probs + probs_upper should be 1
print(probs + probs_upper)
# Calculate log CDF
log_probs <- pekw(q_vals, alpha_par, beta_par, lambda_par, log_p = TRUE)
print(log_probs)
# Check: should match log(probs)
print(log(probs))
# Compare with pgkw setting gamma = 1, delta = 0
probs_gkw <- pgkw(q_vals, alpha_par, beta_par, gamma = 1.0, delta = 0.0,
lambda = lambda_par)
print(paste("Max difference:", max(abs(probs - probs_gkw)))) # Should be near zero
# Plot the CDF for different lambda values
curve_q <- seq(0.01, 0.99, length.out = 200)
curve_p1 <- pekw(curve_q, alpha = 2, beta = 3, lambda = 0.5)
curve_p2 <- pekw(curve_q, alpha = 2, beta = 3, lambda = 1.0) # standard Kw
curve_p3 <- pekw(curve_q, alpha = 2, beta = 3, lambda = 2.0)
plot(curve_q, curve_p2, type = "l", main = "EKw CDF Examples (alpha=2, beta=3)",
xlab = "q", ylab = "F(q)", col = "red", ylim = c(0, 1))
lines(curve_q, curve_p1, col = "blue")
lines(curve_q, curve_p3, col = "green")
legend("bottomright", legend = c("lambda=0.5", "lambda=1.0 (Kw)", "lambda=2.0"),
col = c("blue", "red", "green"), lty = 1, bty = "n")
# }
Run the code above in your browser using DataLab