gkwreg: Generalized Kumaraswamy Regression Models
Overview
The gkwreg
package provides a robust and efficient framework for
modeling data restricted to the standard unit interval $(0, 1)$, such as
proportions, rates, fractions, or indices. While the Beta distribution
is commonly used for such data, gkwreg
focuses on the Generalized
Kumaraswamy (GKw) distribution family, offering enhanced flexibility
by encompassing several important bounded distributions (including Beta
and Kumaraswamy) as special cases.
The package facilitates both distribution fitting and regression modeling with potentially all distribution parameters modeled as functions of covariates using various link functions. Estimation is performed efficiently via Maximum Likelihood leveraging the Template Model Builder (TMB) framework, which utilizes automatic differentiation for superior speed, accuracy, and stability.
Key Features
Flexible Distribution Family: Model data using the 5-parameter Generalized Kumaraswamy (GKw) distribution and its seven key nested sub-families:
Distribution Code Parameters Modeled Fixed Parameters # Par. Generalized Kumaraswamy gkw
alpha
,beta
,gamma
,delta
,lambda
None
5 Beta-Kumaraswamy bkw
alpha
,beta
,gamma
,delta
lambda
= 14 Kumaraswamy-Kumaraswamy kkw
alpha
,beta
,delta
,lambda
gamma
= 14 Exponentiated Kumaraswamy ekw
alpha
,beta
,lambda
gamma
= 1,delta
= 03 McDonald / Beta Power mc
gamma
,delta
,lambda
alpha
= 1,beta
= 13 Kumaraswamy kw
alpha
,beta
gamma
= 1,delta
= 0,lambda
= 12 Beta beta
gamma
,delta
alpha
= 1,beta
= 1,lambda
= 12 Advanced Regression Modeling (
gkwreg
): Independently model each relevant distribution parameter as a function of covariates using a flexible formula interface:y ~ alpha_terms | beta_terms | gamma_terms | delta_terms | lambda_terms
Multiple Link Functions: Choose appropriate link functions for each parameter, including:
log
(default for all parameters)logit
,probit
,cloglog
(with optional scaling)identity
,inverse
,sqrt
Efficient Estimation: Utilizes the TMB package for fast and stable Maximum Likelihood Estimation, leveraging automatic differentiation for precise gradient and Hessian calculations.
Standard R Interface: Provides familiar methods like
summary()
,predict()
,plot()
,coef()
,vcov()
,logLik()
,AIC()
,BIC()
,residuals()
for model inspection, inference, and diagnostics.Distribution Utilities: Implements standard
d*
,p*
,q*
,r*
also as analytical log-likelihoodll*
, gradientgr*
and hessianhs*
functions for all supported distributions in C++/RcppArmadillo.
Installation
# Install the stable version from CRAN:
install.packages("gkwreg")
# Or install the development version from GitHub:
# install.packages("devtools")
devtools::install_github("evandeilton/gkwreg")
Mathematical Background
The Generalized Kumaraswamy (GKw) Distribution
The GKw distribution is a flexible five-parameter distribution for variables on $(0, 1)$. Its cumulative distribution function (CDF) is given by:
$$F(x; \alpha, \beta, \gamma, \delta, \lambda) = I_{[1-(1-x^{\alpha})^{\beta}]^{\lambda}}(\gamma, \delta)$$
where $I_z(a,b)$ is the regularized incomplete beta function, and $\alpha, \beta, \gamma, \delta, \lambda > 0$ are the distribution parameters. The corresponding probability density function (PDF) is:
$$f(x; \alpha, \beta, \gamma, \delta, \lambda) = \frac{\lambda \alpha \beta x^{\alpha-1}}{B(\gamma, \delta)} (1-x^{\alpha})^{\beta-1} [1-(1-x^{\alpha})^{\beta}]^{\gamma\lambda-1} {1-[1-(1-x^{\alpha})^{\beta}]^{\lambda}}^{\delta-1}$$
where $B(\gamma, \delta)$ is the beta function.
The five parameters collectively provide exceptional flexibility in modeling distributions on $(0, 1)$: - Parameters alpha and beta primarily govern the basic shape inherited from the Kumaraswamy distribution - Parameters gamma and delta affect tail behavior and concentration around modes - Parameter lambda introduces additional flexibility, influencing skewness and peak characteristics
This parameterization allows the GKw distribution to capture a wide spectrum of shapes, including symmetric, skewed, unimodal, bimodal, J-shaped, U-shaped, and bathtub-shaped forms.
Regression Framework
In the regression setting, we assume that the response variable $y_i \in (0,1)$ follows a distribution from the GKw family with parameters $\theta_i = (\alpha_i, \beta_i, \gamma_i, \delta_i, \lambda_i)^{\top}$. Each parameter $\theta_{ip}$ (where $p \in {$alpha, beta, gamma, delta, lambda$}$) can depend on covariates through a link function $g_p(\cdot)$:
$$g_p(\theta_{ip}) = \eta_{ip} = \mathbf{x}_{ip}^{\top}\boldsymbol{\beta}_p$$
where $\eta_{ip}$ is the linear predictor, and $\boldsymbol{\beta}p$ is
the vector of regression coefficients. Equivalently,
$\theta{ip} = g_p^{-1}(\eta_{ip})$. The default link function is log
for all parameters, ensuring the positivity constraint.
Parameters are estimated using maximum likelihood, with the log-likelihood function:
$$\ell(\Theta; \mathbf{y}, \mathbf{X}) = \sum_{i=1}^{n} \log f(y_i; \theta_i)$$
where each parameter $\theta_{ip}$ depends on $\Theta$ (the complete set of regression coefficients) via the link functions and linear predictors.
Computational Engine: TMB
The package uses Template Model Builder (TMB) (Kristensen et al. 2016) as its computational backend. TMB translates the statistical model into C++ templates and uses Automatic Differentiation (AD) to compute exact gradients and Hessians, providing several advantages:
- Speed: AD combined with compiled C++ is significantly faster than numerical differentiation or pure R implementations
- Accuracy: AD provides derivatives accurate to machine precision
- Stability: Precise derivatives improve optimization stability and convergence reliability
- Scalability: Efficiently handles models with many parameters
Examples
Regression Modeling
Model parameters of a GKw family distribution as functions of covariates:
library(gkwreg)
# Simulate data for a Kumaraswamy regression model
set.seed(123)
n <- 100
x1 <- runif(n, -2, 2)
x2 <- rnorm(n)
# Simulate true parameters (using log link)
alpha_true <- exp(0.8 + 0.3 * x1 - 0.2 * x2)
beta_true <- exp(1.2 - 0.4 * x1 + 0.1 * x2)
# Generate response
y <- rkw(n, alpha = alpha_true, beta = beta_true)
y <- pmax(pmin(y, 1 - 1e-7), 1e-7) # Ensure y in (0, 1)
df1 <- data.frame(y = y, x1 = x1, x2 = x2)
# Fit Kumaraswamy regression: alpha ~ x1 + x2, beta ~ x1 + x2
kw_model <- gkwreg(y ~ x1 + x2 | x1 + x2, data = df1, family = "kw")
summary(kw_model)
Real Data Analysis
# Food Expenditure Data
library(gkwreg)
data("FoodExpenditure", package = "betareg")
FoodExpenditure$y <- FoodExpenditure$food/FoodExpenditure$income
# Fit models from different GKw families
kkw_model <- gkwreg(y ~ income, data = FoodExpenditure, family = "kkw")
ekw_model <- gkwreg(y ~ income, data = FoodExpenditure, family = "ekw")
kw_model <- gkwreg(y ~ income, data = FoodExpenditure, family = "kw")
# Compare models
data.frame(
logLik = rbind(logLik(kkw_model), logLik(ekw_model), logLik(kw_model)),
AIC = rbind(AIC(kkw_model), AIC(ekw_model), AIC(kw_model)),
BIC = rbind(BIC(kkw_model), BIC(ekw_model), BIC(kw_model))
)
# Summary
summary(kw_model)
res <- residuals(kw_model, type = "quantile")
# Visual diagnostics
plot(kw_model)
# Predicted
pred <- predict(kw_model)
Distribution Fitting
Fit a GKw family distribution to univariate data (no covariates):
# Simulate data from Beta(2, 3)
set.seed(2203)
y_beta <- rbeta_(1000, gamma = 2, delta = 3)
# Fit Beta and Kumaraswamy distributions
fit_beta <- gkwfit(data = y_beta, family = "beta")
fit_kw <- gkwfit(data = y_beta, family = "kw")
# Compare models
summary(fit_beta)
summary(fit_kw)
AIC(fit_beta)
AIC(fit_kw)
Diagnostic Methods
The package provides several diagnostic tools for model assessment:
# Residual analysis
model <- gkwreg(y ~ x1 | x2, data = mydata, family = "kw")
res <- residuals(model, type = "quantile") # Randomized quantile residuals
# Visual diagnostics
plot(model) # QQ-plot, residuals vs. fitted, etc.
pred <- predict(model, type = "response")
References
Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation, 81(7), 883-898.
Carrasco, J. M. F., Ferrari, S. L. P., & Cordeiro, G. M. (2010). A new generalized Kumaraswamy distribution. arXiv preprint arXiv:1004.0911.
Jones, M. C. (2009). Kumaraswamy’s distribution: A beta-type distribution with some tractability advantages. Statistical Methodology, 6(1), 70-81.
Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H., & Bell, B. M. (2016). TMB: Automatic Differentiation and Laplace Approximation. Journal of Statistical Software, 70(5), 1-21.
Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes. Journal of Hydrology, 46(1-2), 79-88.
Ferrari, S. L. P., & Cribari-Neto, F. (2004). Beta regression for modelling rates and proportions. Journal of Applied Statistics, 31(7), 799-815.
Cribari-Neto, F., & Zeileis, A. (2010). Beta Regression in R. Journal of Statistical Software, 34(2), 1-24.
Lopes, J. E. (2025). Generalized Kumaraswamy Regression Models with gkwreg. Journal of Statistical Software, forthcoming.
Comparing with Other Packages
The gkwreg
package complements and extends existing approaches for
modeling bounded data:
Feature | gkwreg | betareg | gamlss | brms |
---|---|---|---|---|
Distribution Family | GKw hierarchy (7 distributions) | Beta | Multiple | Multiple |
Estimation Method | MLE via TMB | MLE | MLE/GAMLSS | Bayesian |
Parameter Modeling | All parameters | Mean, precision | All parameters | All parameters |
Computation Speed | Fast (TMB + AD) | Fast | Moderate | Slow (MCMC) |
Default Link | log | logit (mean) | Distribution-specific | Distribution-specific |
Random Effects | No | No | Yes | Yes |
Contributing
Contributions to gkwreg
are welcome! Please feel free to submit issues
or pull requests on the GitHub
repository.
License
This package is licensed under the MIT License. See the LICENSE file for details.
Author and Maintainer
Lopes, J. E. (evandeilton@gmail.com)
LEG - Laboratório de Estatística e Geoinformação
UFPR - Universidade Federal do Paraná, Brazil