# \donttest{
# Example values
p_vals <- c(0.1, 0.5, 0.9)
alpha_par <- 2.0
beta_par <- 3.0
delta_par <- 0.5
lambda_par <- 1.5
# Calculate quantiles
quantiles <- qkkw(p_vals, alpha_par, beta_par, delta_par, lambda_par)
print(quantiles)
# Calculate quantiles for upper tail probabilities P(X > q) = p
# e.g., for p=0.1, find q such that P(X > q) = 0.1 (90th percentile)
quantiles_upper <- qkkw(p_vals, alpha_par, beta_par, delta_par, lambda_par,
lower_tail = FALSE)
print(quantiles_upper)
# Check: qkkw(p, ..., lt=F) == qkkw(1-p, ..., lt=T)
print(qkkw(1 - p_vals, alpha_par, beta_par, delta_par, lambda_par))
# Calculate quantiles from log probabilities
log_p_vals <- log(p_vals)
quantiles_logp <- qkkw(log_p_vals, alpha_par, beta_par, delta_par, lambda_par,
log_p = TRUE)
print(quantiles_logp)
# Check: should match original quantiles
print(quantiles)
# Compare with qgkw setting gamma = 1
quantiles_gkw <- qgkw(p_vals, alpha_par, beta_par, gamma = 1.0,
delta_par, lambda_par)
print(paste("Max difference:", max(abs(quantiles - quantiles_gkw)))) # Should be near zero
# Verify inverse relationship with pkkw
p_check <- 0.75
q_calc <- qkkw(p_check, alpha_par, beta_par, delta_par, lambda_par)
p_recalc <- pkkw(q_calc, alpha_par, beta_par, delta_par, lambda_par)
print(paste("Original p:", p_check, " Recalculated p:", p_recalc))
# abs(p_check - p_recalc) < 1e-9 # Should be TRUE
# Boundary conditions
print(qkkw(c(0, 1), alpha_par, beta_par, delta_par, lambda_par)) # Should be 0, 1
print(qkkw(c(-Inf, 0), alpha_par, beta_par, delta_par, lambda_par, log_p = TRUE)) # Should be 0, 1
# }
Run the code above in your browser using DataLab