# \donttest{
# Example values
p_vals <- c(0.1, 0.5, 0.9)
gamma_par <- 2.0
delta_par <- 1.5
lambda_par <- 1.0 # Equivalent to Beta(gamma, delta+1)
# Calculate quantiles using qmc
quantiles <- qmc(p_vals, gamma_par, delta_par, lambda_par)
print(quantiles)
# Compare with Beta quantiles
print(stats::qbeta(p_vals, shape1 = gamma_par, shape2 = delta_par + 1))
# Calculate quantiles for upper tail probabilities P(X > q) = p
quantiles_upper <- qmc(p_vals, gamma_par, delta_par, lambda_par,
lower_tail = FALSE)
print(quantiles_upper)
# Check: qmc(p, ..., lt=F) == qmc(1-p, ..., lt=T)
print(qmc(1 - p_vals, gamma_par, delta_par, lambda_par))
# Calculate quantiles from log probabilities
log_p_vals <- log(p_vals)
quantiles_logp <- qmc(log_p_vals, gamma_par, delta_par, lambda_par, log_p = TRUE)
print(quantiles_logp)
# Check: should match original quantiles
print(quantiles)
# Compare with qgkw setting alpha = 1, beta = 1
quantiles_gkw <- qgkw(p_vals, alpha = 1.0, beta = 1.0, gamma = gamma_par,
delta = delta_par, lambda = lambda_par)
print(paste("Max difference:", max(abs(quantiles - quantiles_gkw)))) # Should be near zero
# Verify inverse relationship with pmc
p_check <- 0.75
q_calc <- qmc(p_check, gamma_par, delta_par, lambda_par) # Use lambda != 1
p_recalc <- pmc(q_calc, gamma_par, delta_par, lambda_par)
print(paste("Original p:", p_check, " Recalculated p:", p_recalc))
# abs(p_check - p_recalc) < 1e-9 # Should be TRUE
# Boundary conditions
print(qmc(c(0, 1), gamma_par, delta_par, lambda_par)) # Should be 0, 1
print(qmc(c(-Inf, 0), gamma_par, delta_par, lambda_par, log_p = TRUE)) # Should be 0, 1
# }
Run the code above in your browser using DataLab