Learn R Programming

glsm()

Welcome to the glsm package!

When the response variable Y takes one of R > 1 values, the function ‘glsm()’ computes the maximum likelihood estimates (MLEs) of the parameters under four models: null, complete, saturated, and logistic. It also calculates the log-likelihood values for each model. This method assumes independent, non-identically distributed variables. For grouped data with a multinomial outcome, where observations are divided into J populations, the function ‘glsm()’ provides estimation for any number K of explanatory variables.

Details

The saturated model is characterized by the assumptions 1 and 2 presented in section 2.3 by Llinás (2006).

Installation

You can install the development version of glsm like so:

# install.packages("devtools")

remotes::install_github("jlvia1191/glsm", force = TRUE)

devtools::install_github("jlvia1191/glsm", force = TRUE)

Example Usage

This is a basic example which shows you how to solve a common problem:

library(glsm)
data("hsbdemo", package = "glsm")
model <- glsm(prog ~ ses + gender, data = hsbdemo, ref = "academic")
model
#> 
#> Call:
#> glsm(formula = prog ~ ses + gender, data = hsbdemo, ref = "academic")
#> 
#> Populations in Saturated Model: 6
#> 
#> Coefficients: 
#>                         Coef(B) Std.Error
#> (Intercept):general  -1.6547758 0.4175354
#> (Intercept):vocation -1.8469099 0.4478055
#> seslow:general        1.4118732 0.5064763
#> seslow:vocation       1.3534875 0.5548849
#> sesmiddle:general     0.7550865 0.4561360
#> sesmiddle:vocation    1.4430949 0.4709456
#> gendermale:general    0.2216624 0.3716764
#> gendermale:vocation   0.1098969 0.3599743
#>                         Exp(B)
#> (Intercept):general  0.1911349
#> (Intercept):vocation 0.1577238
#> seslow:general       4.1036349
#> seslow:vocation      3.8709018
#> sesmiddle:general    2.1277956
#> sesmiddle:vocation   4.2337787
#> gendermale:general   1.2481500
#> gendermale:vocation  1.1161630
#> 
#> Log Likelihood: 
#>          Estimation
#> Complete     0.0000
#> Null      -204.0967
#> Logit     -195.5208
#> Saturate  -194.5159

References

[1] Hosmer, D., Lemeshow, S., & Sturdivant, R. (2013). Applied Logistic Regression (3rd ed.). New York: Wiley. ISBN: 978-0-470-58247-3

[2] Llinás, H. (2006). Precisiones en la teoría de los modelos logísticos. Revista Colombiana de Estadística, 29(2), 239–265.

[3] Llinás, H., & Carreño, C. (2012). The Multinomial Logistic Model for the Case in Which the Response Variable Can Assume One of Three Levels and Related Models. Revista Colombiana de Estadística, 35(1), 131–138.

[4] Orozco, E., Llinás, H., & Fonseca, J. (2020). Convergence theorems in multinomial saturated and logistic models. Revista Colombiana de Estadística, 43(2), 211–231.

[5] Llinás, H., Arteta, M., & Tilano, J. (2016). El modelo de regresión logística para el caso en que la variable de respuesta puede asumir uno de tres niveles: estimaciones, pruebas de hipótesis y selección de modelos. Revista de Matemática: Teoría y Aplicaciones, 23(1), 173–197.

Author(s)

Jorge Luis Villalba Acevedo [cre, aut], Universidad Tecnológica de Bolívar, Cartagena-Colombia.\ Humberto Llinas Solano [aut], Universidad del Norte, Barranquilla-Colombia \ Jorge Borja [aut], Universidad del Norte, Barranquilla-Colombia \ Jorge Tilano [aut], Universidad del Norte, Barranquilla-Colombia.


If you found any ERRORS or have SUGGESTIONS, please report them to my email. Thanks.

Copy Link

Version

Install

install.packages('glsm')

Version

0.0.0.6

License

MIT + file LICENSE

Maintainer

Jorge Villalba

Last Published

July 14th, 2025

Functions in glsm (0.0.0.6)

summary.glsm

Summary Method for in glsm Objects
confint.glsm

Confidence Intervals for Coefficients in glsm Objects
glsm

Saturated Model Log-Likelihood for Multinomial Outcomes
hsbdemo

hsbdemo: School data for testing.