# Load the glsm package and example dataset
library(glsm)
data("hsbdemo", package = "glsm")
# Fit a multinomial logistic regression model using glsm()
model <- glsm(prog ~ ses + gender, data = hsbdemo)
# Get confidence intervals for all model coefficients (default 95% level)
confint(model)
# Get confidence intervals for a specific coefficient
params <- names(model$coefficients)
results <- lapply(params, function(p) {
cat("\nConfidence interval for:", p, "\n")
print(confint(model, parm = p, level = 0.95))
})
Run the code above in your browser using DataLab