powered by
Functions for initializing the likelihood (observation model) which can then be passed to gp_init.
gp_init
lik_gaussian(sigma = 0.5, prior_sigma = prior_logunif())lik_bernoulli(link = "logit")lik_binomial(link = "logit")lik_betabinom(link = "logit", phi = 1, prior_phi = prior_logunif())lik_poisson(link = "log")
lik_bernoulli(link = "logit")
lik_binomial(link = "logit")
lik_betabinom(link = "logit", phi = 1, prior_phi = prior_logunif())
lik_poisson(link = "log")
The likelihood object.
Initial value for the noise standard deviation.
Prior for hyperparameter sigma. See priors.
sigma
priors
Link function if the likelihood supports non-identity links. See Details for information about possible links for each likelihood.
The over dispersion parameter for beta binomial likelihood.
Prior for hyperparameter phi. See priors.
phi
The supported likelihoods are:
lik_gaussian
Gaussian likelihood. Has no links (uses identity link).
lik_bernoulli
Bernoulli likelihood. Possible links: 'logit' or 'probit'.
lik_binomial
Binomial likelihood. Possible links: 'logit' or 'probit'.
lik_betabinom
Beta binomial likelihood. Possible links: 'logit' or 'probit'.
lik_poisson
Poisson likelihood. Possible links: 'log'.
# Basic usage cf <- cf_sexp() lik <- lik_binomial() gp <- gp_init(cf, lik)
Run the code above in your browser using DataLab