Learn R Programming

gplite

An R package for fitting some of the most common Gaussian process (GP) models. Implements Laplace and EP approximations for handling non-Gaussian observation models, performs hyperparameter optimization using maximum marginal likelihood (or posterior), and implements some common sparse approximations for handling larger datasets. Provides also tools for model assessment and comparison via leave-one-out (LOO) cross-validation.

The syntax has taken a lot of inspiration from that of GPstuff but the intention of the package is not to be a GPstuff clone for R.

Resources

Installation

  • Install the latest release from CRAN
install.packages('gplite')
  • To install the latest development version from GitHub, use the following commands (requires devtools package):
if (!require(devtools)) {
  install.packages("devtools")
  library(devtools)
}
devtools::install_github('jpiironen/gplite', build_vignettes = TRUE)

Example

library(gplite)
library(ggplot2)

# create some toy 1d regression data
set.seed(32004)
n <- 200
sigma <- 0.1
x <- rnorm(n)
y <- sin(3*x)*exp(-abs(x)) +  rnorm(n)*sigma

# set up the gp model, and optimize the hyperparameters
gp <- gp_init(cfs = cf_sexp(), lik = lik_gaussian())
gp <- gp_optim(gp, x, y)

# compute the predictive mean and variance in a grid of points
xt <- seq(-4, 4, len=300)
pred <- gp_pred(gp, xt, var=T)

# visualize
mu <- pred$mean
lb <- pred$mean - 2*sqrt(pred$var)
ub <- pred$mean + 2*sqrt(pred$var)
ggplot() +
  geom_ribbon(aes(x=xt, ymin=lb, ymax=ub), fill='lightgray') +
  geom_line(aes(x=xt, y=mu), size=1) +
  geom_point(aes(x=x, y=y), size=0.5) +
  xlab('x') + ylab('y')

Citing

If you find the software useful, please use the following citation:

Piironen, Juho (2021). gplite: General Purpose Gaussian Process Modelling. R package.

Bibtex:

@misc{gplite,
  author = {Piironen, Juho},
  title = {gplite: General Purpose {G}aussian Process Modelling},
  note = {R package},
  year = {2021},
  url = {https://github.com/jpiironen/gplite},
}

References

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian processes for machine learning. MIT Press. Online

Copy Link

Version

Install

install.packages('gplite')

Monthly Downloads

229

Version

0.13.0

License

GPL-3

Maintainer

Juho Piironen

Last Published

August 24th, 2022

Functions in gplite (0.13.0)

cf

Initialize covariance function
gp_init

Initialize a GP model
lik

Initialize likelihood
gp_fit

Fit a GP model
gp_saveload

Save and load a GP model
gp_optim

Optimize hyperparameters of a GP model
approx

Approximations to the posterior of the latent values
gp_energy

Energy of a GP model
param

Get or set GP model parameters
gp_draw

Make predictions with a GP model
gp_loo

Model assessment and comparison
priors

Initialize prior for hyperparameter
method

Initialize method or type of the model
gplite-package

The 'gplite' package.