SCGoptim: Optimise the given function using (scaled) conjugate gradients.
Description
Optimise the given function using (scaled) conjugate gradients.
Usage
options <- optimiDefaultOptions()
newParams <- SCGoptim(x, fn, grad, options, ...)
newParams <- CGoptim(x, fn, grad, options, ...)
model <- modelOptimise(model, options, ...)
Arguments
model
the model to be optimised.
x
initial parameter values.
fn
objective function to minimise
grad
gradient function of the objective
options
options structure like one returned by
optimiDefaultOptions. The fields are interpreted as\
option[1] : number of iterations\
option[2] : interval for the line search\
option[3] : tolerence for x to terminate the loop\
opt
## Not run to speed up package checks# model <- GPLearn(..., dontOptimise=TRUE)# options <- optimiDefaultOptions()# model <- modelOptimise(model, options)