Learn R Programming

⚠️There's a newer version (1.08) of this package.Take me there.

gptk (version 1.0)

Gaussian Processes Tool-Kit

Description

The gptk package implements a general-purpose toolkit for Gaussian process regression with an RBF covariance function. Based on a MATLAB implementation written by Neil D. Lawrence. See inst/doc/index.html for more details.

Copy Link

Version

Install

install.packages('gptk')

Monthly Downloads

38

Version

1.0

License

AGPL-3

Maintainer

Alfredo A Kalaitzis

Last Published

December 12th, 2010

Functions in gptk (1.0)

gpExtractParam

Extract a parameter vector from a GP model.
cmpndKernParamInit

CMPND kernel parameter initialisation.
gpOptions

Return default options for GP model.
gpComputeM

Compute the matrix m given the model.
whiteKernGradX

Gradient of WHITE kernel with respect to input locations.
gpPosteriorSample

Plot Samples from a GP Posterior.
expTransform

Constrains a parameter.
gpLogLikelihood

Compute the log likelihood of a GP.
gpCovGradsTest

Test the gradients of the likelihood wrt the covariance.
rbfKernParamInit

RBF kernel parameter initialisation.
whiteKernDiagGradX

Gradient of WHITE kernel's diagonal with respect to X.
demOptimiseGp

Gaussian Process Optimisation Demo
gaussianNoiseParamInit

GAUSSIAN noise parameter initialisation.
whiteKernParamInit

WHITE kernel parameter initialisation.
basePlot

Plot a contour of the 2D Gaussian distribution with covariance matrix K.
modelOut

Give the output of a model for given X.
demRegression

Gaussian Process Regression Demo
gpObjective

Wrapper function for GP objective.
gpBlockIndices

Return indices of given block.
gpScaleBiasGradient

Compute the log likelihood gradient wrt the scales.
rbfKernGradX

Gradient of RBF kernel with respect to input locations.
gpUpdateKernels

Update the kernels that are needed.
gpCreate

Create a GP model with inducing varibles/pseudo-inputs.
cmpndNoiseParamInit

CMPND noise parameter initialisation.
gpOptimise

Optimise the inducing variable based kernel.
demGpSample

Gaussian Process Sampling Demo
SCGoptim

Optimise the given function using (scaled) conjugate gradients.
gpComputeAlpha

Update the vector `alpha' for computing posterior mean quickly.
optimiDefaultConstraint

Returns function for parameter constraint.
kernGradient

Compute the gradient wrt the kernel parameters.
gpOut

Evaluate the output of an Gaussian process model.
gaussSamp

Sample from a Gaussian with a given covariance.
gpLogLikeGradients

Compute the gradients for the parameters and X.
demInterpolation

Gaussian Process Interpolation Demo
rbfKernDiagGradX

Gradient of RBF kernel's diagonal with respect to X.
modelGradient

Model log-likelihood/objective error function and its gradient.
gpUpdateAD

Update the representations of A and D associated with the model.
modelExtractParam

Extract the parameters of a model.
gpPlot

Gaussian Process Plotter
kernDiagGradX

Compute the gradient of the kernel wrt X.
gaussianNoiseOut

Compute the output of the GAUSSIAN noise given the input mean and variance.
kernDiagGradient

Compute the gradient of the kernel's parameters for the diagonal.
gpSample

Plot Samples from a GP.
gpExpandParam

Expand a parameter vector into a GP model.
gpPosteriorMeanVar

Mean and variances of the posterior at points given by X.
gpDataIndices

Return indices of present data.
gpMeanFunctionGradient

Compute the log likelihood gradient wrt the scales.
kernParamInit

Kernel parameter initialisation.
gpTest

Test the gradients of the gpCovGrads function and the gp models.
demGpCov2D

Gaussian Process 2D Covariance Demo
modelOutputGrad

Compute derivatives with respect to params of model outputs.
kernCompute

Compute the kernel given the parameters and X.
multiKernParamInit

MULTI kernel parameter initialisation.
noiseCreate

Initialise a noise structure.
noiseParamInit

Noise model's parameter initialisation.
gpGradient

Gradient wrapper for a GP model.
modelGradientCheck

Check gradients of given model.
kernTest

Run some tests on the specified kernel.
noiseOut

Give the output of the noise model given the mean and variance.
zeroAxes

A function to move the axes crossing point to the origin.
gpCovGrads

Sparse objective function gradients wrt Covariance functions for inducing variables.
modelExpandParam

Update a model structure with new parameters or update the posterior processes.
modelDisplay

Display a model.
kernCreate

Initialise a kernel structure.
demAutoOptimiseGp

Gaussian Process Optimisation Demo