Learn R Programming

⚠️There's a newer version (1.08) of this package.Take me there.

gptk (version 1.02)

Gaussian Processes Tool-Kit

Description

The gptk package implements a general-purpose toolkit for Gaussian process regression with an RBF covariance function. Based on a MATLAB implementation by Neil D. Lawrence. See inst/doc/index.html for more details.

Copy Link

Version

Install

install.packages('gptk')

Monthly Downloads

51

Version

1.02

License

AGPL-3

Maintainer

Alfredo A Kalaitzis

Last Published

June 17th, 2011

Functions in gptk (1.02)

gpExtractParam

Extract a parameter vector from a GP model.
optimiDefaultConstraint

Returns function for parameter constraint.
whiteKernParamInit

WHITE kernel parameter initialisation.
expTransform

Constrains a parameter.
gpOptions

Return default options for GP model.
zeroAxes

A function to move the axes crossing point to the origin.
gaussSamp

Sample from a Gaussian with a given covariance.
gpPosteriorMeanVar

Mean and variances of the posterior at points given by X.
basePlot

Plot a contour of the 2D Gaussian distribution with covariance matrix K.
gaussianNoiseOut

Compute the output of the GAUSSIAN noise given the input mean and variance.
demInterpolation

Gaussian Process Interpolation Demo
gpObjective

Wrapper function for GP objective.
kernDiagGradient

Compute the gradient of the kernel's parameters for the diagonal.
gpGradient

Gradient wrapper for a GP model.
gpComputeAlpha

Update the vector `alpha' for computing posterior mean quickly.
gpLogLikeGradients

Compute the gradients for the parameters and X.
modelExtractParam

Extract the parameters of a model.
SCGoptim

Optimise the given function using (scaled) conjugate gradients.
gpCovGrads

Sparse objective function gradients wrt Covariance functions for inducing variables.
demRegression

Gaussian Process Regression Demo
kernCreate

Initialise a kernel structure.
modelGradientCheck

Check gradients of given model.
multiKernParamInit

MULTI kernel parameter initialisation.
demGpSample

Gaussian Process Sampling Demo
gpDataIndices

Return indices of present data.
rbfKernParamInit

RBF kernel parameter initialisation.
kernDiagGradX

Compute the gradient of the kernel wrt X.
modelOut

Give the output of a model for given X.
noiseCreate

Initialise a noise structure.
gpPlot

Gaussian Process Plotter
gpComputeM

Compute the matrix m given the model.
gpCreate

Create a GP model with inducing variables/pseudo-inputs.
gpScaleBiasGradient

Compute the log likelihood gradient wrt the scales.
cmpndNoiseParamInit

CMPND noise parameter initialisation.
gpUpdateKernels

Update the kernels that are needed.
gpCovGradsTest

Test the gradients of the likelihood wrt the covariance.
whiteKernDiagGradX

Gradient of WHITE kernel's diagonal with respect to X.
rbfKernGradX

Gradient of RBF kernel with respect to input locations.
gpBlockIndices

Return indices of given block.
modelOutputGrad

Compute derivatives with respect to params of model outputs.
noiseParamInit

Noise model's parameter initialisation.
gpSample

Plot Samples from a GP.
gpExpandParam

Expand a parameter vector into a GP model.
gpOptimise

Optimise the inducing variable based kernel.
demOptimiseGp

Gaussian Process Optimisation Demo
modelDisplay

Display a model.
gpUpdateAD

Update the representations of A and D associated with the model.
gpOut

Evaluate the output of an Gaussian process model.
noiseOut

Give the output of the noise model given the mean and variance.
gpLogLikelihood

Compute the log likelihood of a GP.
demGpCov2D

Gaussian Process 2D Covariance Demo
kernGradient

Compute the gradient wrt the kernel parameters.
kernCompute

Compute the kernel given the parameters and X.
gaussianNoiseParamInit

GAUSSIAN noise parameter initialisation.
kernParamInit

Kernel parameter initialisation.
gpMeanFunctionGradient

Compute the log likelihood gradient wrt the scales.
rbfKernDiagGradX

Gradient of RBF kernel's diagonal with respect to X.
modelGradient

Model log-likelihood/objective error function and its gradient.
kernTest

Run some tests on the specified kernel.
whiteKernGradX

Gradient of WHITE kernel with respect to input locations.
modelExpandParam

Update a model structure with new parameters or update the posterior processes.
cmpndKernParamInit

CMPND kernel parameter initialisation.
gpTest

Test the gradients of the gpCovGrads function and the gp models.
gpPosteriorSample

Plot Samples from a GP Posterior.