Learn R Programming

⚠️There's a newer version (1.08) of this package.Take me there.

gptk (version 1.03)

Gaussian Processes Tool-Kit

Description

The gptk package implements a general-purpose toolkit for Gaussian process regression with an RBF covariance function. Based on a MATLAB implementation by Neil D. Lawrence. See inst/doc/index.html for more details.

Copy Link

Version

Install

install.packages('gptk')

Monthly Downloads

38

Version

1.03

License

AGPL-3

Maintainer

Alfredo A Kalaitzis

Last Published

July 26th, 2011

Functions in gptk (1.03)

kernDiagGradient

Compute the gradient of the kernel's parameters for the diagonal.
gpOptions

Return default options for GP model.
modelDisplay

Display a model.
cmpndNoiseParamInit

CMPND noise parameter initialisation.
demGpSample

Gaussian Process Sampling Demo
whiteKernGradX

Gradient of WHITE kernel with respect to input locations.
gpExtractParam

Extract a parameter vector from a GP model.
kernCreate

Initialise a kernel structure.
gpPosteriorSample

Plot Samples from a GP Posterior.
gpTest

Test the gradients of the gpCovGrads function and the gp models.
modelGradient

Model log-likelihood/objective error function and its gradient.
gpOut

Evaluate the output of an Gaussian process model.
kernTest

Run some tests on the specified kernel.
kernGradient

Compute the gradient wrt the kernel parameters.
demOptimiseGp

Gaussian Process Optimisation Demo
gpPosteriorMeanVar

Mean and variances of the posterior at points given by X.
gpGradient

Gradient wrapper for a GP model.
cmpndKernParamInit

CMPND kernel parameter initialisation.
modelExtractParam

Extract the parameters of a model.
rbfKernGradX

Gradient of RBF kernel with respect to input locations.
gpUpdateAD

Update the representations of A and D associated with the model.
gpLogLikeGradients

Compute the gradients for the parameters and X.
modelGradientCheck

Check gradients of given model.
gpCreate

Create a GP model with inducing variables/pseudo-inputs.
kernDiagGradX

Compute the gradient of the kernel wrt X.
optimiDefaultConstraint

Returns function for parameter constraint.
noiseOut

Give the output of the noise model given the mean and variance.
demInterpolation

Gaussian Process Interpolation Demo
demGpCov2D

Gaussian Process 2D Covariance Demo
basePlot

Plot a contour of the 2D Gaussian distribution with covariance matrix K.
gpOptimise

Optimise the inducing variable based kernel.
gaussSamp

Sample from a Gaussian with a given covariance.
gpUpdateKernels

Update the kernels that are needed.
gaussianNoiseOut

Compute the output of the GAUSSIAN noise given the input mean and variance.
gaussianNoiseParamInit

GAUSSIAN noise parameter initialisation.
gpLogLikelihood

Compute the log likelihood of a GP.
gpDataIndices

Return indices of present data.
gpComputeM

Compute the matrix m given the model.
gpScaleBiasGradient

Compute the log likelihood gradient wrt the scales.
rbfKernDiagGradX

Gradient of RBF kernel's diagonal with respect to X.
gpObjective

Wrapper function for GP objective.
gpCovGradsTest

Test the gradients of the likelihood wrt the covariance.
noiseParamInit

Noise model's parameter initialisation.
gpComputeAlpha

Update the vector `alpha' for computing posterior mean quickly.
expTransform

Constrains a parameter.
gpPlot

Gaussian Process Plotter
gpMeanFunctionGradient

Compute the log likelihood gradient wrt the scales.
modelExpandParam

Update a model structure with new parameters or update the posterior processes.
gpCovGrads

Sparse objective function gradients wrt Covariance functions for inducing variables.
whiteKernParamInit

WHITE kernel parameter initialisation.
rbfKernParamInit

RBF kernel parameter initialisation.
multiKernParamInit

MULTI kernel parameter initialisation.
SCGoptim

Optimise the given function using (scaled) conjugate gradients.
gpSample

Plot Samples from a GP.
whiteKernDiagGradX

Gradient of WHITE kernel's diagonal with respect to X.
noiseCreate

Initialise a noise structure.
zeroAxes

A function to move the axes crossing point to the origin.
kernCompute

Compute the kernel given the parameters and X.
modelOutputGrad

Compute derivatives with respect to params of model outputs.
kernParamInit

Kernel parameter initialisation.
modelOut

Give the output of a model for given X.
gpBlockIndices

Return indices of given block.
gpExpandParam

Expand a parameter vector into a GP model.
demRegression

Gaussian Process Regression Demo