Learn R Programming

⚠️There's a newer version (1.08) of this package.Take me there.

gptk (version 1.06)

Gaussian Processes Tool-Kit

Description

The gptk package implements a general-purpose toolkit for Gaussian process regression with a variety of covariance functions (e.g. RBF, Mattern, polynomial, etc). Based on a MATLAB implementation by Neil D. Lawrence. See inst/doc/index.html for more details.

Copy Link

Version

Install

install.packages('gptk')

Monthly Downloads

38

Version

1.06

License

AGPL-3

Maintainer

Alfredo A Kalaitzis

Last Published

March 12th, 2013

Functions in gptk (1.06)

gpExpandParam

Expand a parameter vector into a GP model.
demGpSample

Gaussian Process Sampling Demo
gpLogLikelihood

Compute the log likelihood of a GP.
SCGoptim

Optimise the given function using (scaled) conjugate gradients.
expTransform

Constrains a parameter.
basePlot

Plot a contour of the 2D Gaussian distribution with covariance matrix K.
cmpndNoiseParamInit

CMPND noise parameter initialisation.
gpGradient

Gradient wrapper for a GP model.
demGpCov2D

Gaussian Process 2D Covariance Demo
gpCovGrads

Sparse objective function gradients wrt Covariance functions for inducing variables.
cmpndKernParamInit

CMPND kernel parameter initialisation.
gpLogLikeGradients

Compute the gradients for the parameters and X.
gaussSamp

Sample from a Gaussian with a given covariance.
gpMeanFunctionGradient

Compute the log likelihood gradient wrt the scales.
gpPosteriorMeanVar

Mean and variances of the posterior at points given by X.
gpUpdateAD

Update the representations of A and D associated with the model.
gpSample

Plot Samples from a GP.
kernGradient

Compute the gradient wrt the kernel parameters.
gpDataIndices

Return indices of present data.
kernParamInit

Kernel parameter initialisation.
modelGradientCheck

Check gradients of given model.
rbfKernParamInit

RBF kernel parameter initialisation.
gpOptimise

Optimise the inducing variable based kernel.
gpCreate

Create a GP model with inducing variables/pseudo-inputs.
gpBlockIndices

Return indices of given block.
modelOut

Give the output of a model for given X.
demOptimiseGp

Gaussian Process Optimisation Demo
gaussianNoiseParamInit

GAUSSIAN noise parameter initialisation.
kernCompute

Compute the kernel given the parameters and X.
zeroAxes

A function to move the axes crossing point to the origin.
multiKernParamInit

MULTI kernel parameter initialisation.
modelExpandParam

Update a model structure with new parameters or update the posterior processes.
demAutoOptimiseGp

Gaussian Process Optimisation Demo
gpScaleBiasGradient

Compute the log likelihood gradient wrt the scales.
gpTest

Test the gradients of the gpCovGrads function and the gp models.
gpOptions

Return default options for GP model.
gpPlot

Gaussian Process Plotter
modelExtractParam

Extract the parameters of a model.
rbfKernGradX

Gradient of RBF kernel with respect to input locations.
kernCreate

Initialise a kernel structure.
noiseOut

Give the output of the noise model given the mean and variance.
gaussianNoiseOut

Compute the output of the GAUSSIAN noise given the input mean and variance.
modelGradient

Model log-likelihood/objective error function and its gradient.
gpComputeAlpha

Update the vector `alpha' for computing posterior mean quickly.
gpCovGradsTest

Test the gradients of the likelihood wrt the covariance.
demRegression

Gaussian Process Regression Demo
gpObjective

Wrapper function for GP objective.
kernTest

Run some tests on the specified kernel.
whiteKernDiagGradX

Gradient of WHITE kernel's diagonal with respect to X.
demInterpolation

Gaussian Process Interpolation Demo
whiteKernGradX

Gradient of WHITE kernel with respect to input locations.
kernDiagGradX

Compute the gradient of the kernel wrt X.
modelDisplay

Display a model.
whiteKernParamInit

WHITE kernel parameter initialisation.
noiseCreate

Initialise a noise structure.
kernDiagGradient

Compute the gradient of the kernel's parameters for the diagonal.
optimiDefaultConstraint

Returns function for parameter constraint.
rbfKernDiagGradX

Gradient of RBF kernel's diagonal with respect to X.
modelOutputGrad

Compute derivatives with respect to params of model outputs.
gpComputeM

Compute the matrix m given the model.
gpExtractParam

Extract a parameter vector from a GP model.
gpPosteriorSample

Plot Samples from a GP Posterior.
gpOut

Evaluate the output of an Gaussian process model.
gpUpdateKernels

Update the kernels that are needed.
noiseParamInit

Noise model's parameter initialisation.