# Hyperg

From gsl v1.9-2
0th

Percentile

##### Hypergeometric functions

Hypergeometric functions as per the Gnu Scientific Library reference manual section 7.21 and AMS-55, chapters 13 and 15. These functions are declared in header file gsl_sf_hyperg.h

Keywords
array
##### Usage
hyperg_0F1(c, x, give=FALSE, strict=TRUE)
hyperg_1F1_int(m, n, x, give=FALSE, strict=TRUE)
hyperg_1F1(a, b, x, give=FALSE, strict=TRUE)
hyperg_U_int(m, n, x, give=FALSE, strict=TRUE)
hyperg_U(a, b, x, give=FALSE, strict=TRUE)
hyperg_2F1(a, b, c, x, give=FALSE, strict=TRUE)
hyperg_2F1_conj(aR, aI, c, x, give=FALSE, strict=TRUE)
hyperg_2F1_renorm(a, b, c, x, give=FALSE, strict=TRUE)
hyperg_2F1_conj_renorm(aR, aI, c, x, give=FALSE, strict=TRUE)
hyperg_2F0(a, b, x, give=FALSE, strict=TRUE)
##### Arguments
x
input: real values
a,b,c
input: real values
m,n
input: integer values
aR,aI
input: real values
give
Boolean with TRUE meaning to return a list of three items: the value, an estimate of the error, and a status number.
strict
Boolean, with TRUE meaning to return NaN if status is an error
##### Note

The circle of convergence of the Gauss hypergeometric series is the unit circle $|z|=1$ (AMS, page 556).

##### References

http://www.gnu.org/software/gsl

##### Aliases
• Hyperg
• hyperg
• hyperg_0F1
• hyperg_1F1_int
• hyperg_1F1
• hyperg_U_int
• hyperg_U
• hyperg_2F1
• hyperg_2F1_conj
• hyperg_2F1_renorm
• hyperg_2F1_conj_renorm
• hyperg_2F0
##### Examples
hyperg_0F1(0.1,0.55)

hyperg_1F1_int(2,3,0.555)
hyperg_1F1(2.12312,3.12313,0.555)
hyperg_U_int(2, 3, 0.555)
hyperg_U(2.234, 3.234, 0.555)
Documentation reproduced from package gsl, version 1.9-2, License: GPL-2

### Community examples

Looks like there are no examples yet.