Learn R Programming

hiPOD (version 1.0)

FindOptPower: search for the optimal pooled design

Description

Perform a grid search over potential design space, and find the predicted power and validity of the designs.

Usage

FindOptPower(cost, sample.size, MAF, OR, error, costPerExp = 18915, costPerPool = 970, costPerX = 300, lower.P = 20, upper.P = 400, lower.N.p = 2, upper.N.p = 200, lower.Xmean = 4, upper.Xmean = 1280, sig.level = 0.05, Number.Grids = 100)

Arguments

cost
cost constraint of the study
sample.size
sample size constraint of the study
MAF
assumed MAF of the variant of interest
OR
assume effect size (odds ratio) of the variant of interest
error
assume sequencing error rate
costPerExp
cost per experiment
costPerPool
cost per pool
costPerX
cost per 1X coverage
lower.P
lower bound of number of pools in potential consideration
upper.P
upper bound of number of pools in potential consideration
lower.N.p
lower bound of number of pool size in potential consideration
upper.N.p
upper bound of number of pool size in potential consideration
lower.Xmean
lower bound of number of coverage per pool in potential consideration
upper.Xmean
upper bound of number of coverage per pool in potential consideration
sig.level
significance level of the statistic test, usually 0.05 for a single test
Number.Grids
number of grids in the search space, preset as 100

Value

Returns a list:
cost
sample.size
constraint.set
scenario.set
designs
the potential designs, validity and power

Details

Given the research question and the study constraints, this function calculates the power and validity of all the potential pooled designs.

See Also

PlotOptPower, ShowOptDesign

Examples

Run this code

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
######## Example 1: A simple example, with very rough grid points (only 20X20 grid points)
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

##### Find the optimal design
example.1 <- FindOptPower(cost=452915, sample.size=5000, MAF=0.03, OR=2, error=0.01, upper.P=200, Number.Grids=20)

##### assign a directory to store the contour plots
##### with your own choice
proj.Dir <- paste(getwd(), "/hiPOD_examples", sep="")
if(!file.exists(proj.Dir)) dir.create(proj.Dir)

##### Inferences on the optimal designs
PlotOptPower(example.1, save.contour=FALSE, plot.3d=FALSE)
# # snapshot3d(filename = paste(proj.Dir, "/example1_3d.bmp", sep=""))
ShowOptDesign(example.1, 5)

Run the code above in your browser using DataLab