```
ineq(x, parameter = NULL, type = c("Gini", "RS", "Atkinson", "Theil", "Kolm", "var", "square.var", "entropy"), na.rm = TRUE)
Gini(x, corr = FALSE, na.rm = TRUE)
RS(x, na.rm = TRUE)
Atkinson(x, parameter = 0.5, na.rm = TRUE)
Theil(x, parameter = 0, na.rm = TRUE)
Kolm(x, parameter = 1, na.rm = TRUE)
var.coeff(x, square = FALSE, na.rm = TRUE)
entropy(x, parameter = 0.5, na.rm = TRUE)
```

x

a vector containing at least non-negative elements

parameter

parameter of the inequality measure (if set to

`NULL`

the default parameter of the respective measure is used)type

character string giving the measure used to compute inequality.
must be one of the strings in the default argument (the first character
is sufficient). defaults to "Gini".

corr

logical. Argument of the function

`Gini`

specifying whether
or not a finite sample correction should be applied.square

logical. Argument of the function

`var.coeff`

, for details
see below.na.rm

logical. Should missing values (

`NA`

s) be removed
prior to computations? If set to `FALSE`

the computations yield
`NA`

.-
the value of the inequality measure

`ineq`

is just a wrapper for the inequality measures `Gini`

,
`RS`

, `Atkinson`

, `Theil`

, `Kolm`

,`var.coeff`

,
`entropy`

. If parameter is set to `NULL`

the default from
the respective function is used. `Gini`

is the Gini coefficient, `RS`

is the the Ricci-Schutz
coefficient (also called Pietra's measure), `Atkinson`

gives
Atkinson's measure and `Kolm`

computes Kolm's measure.

If the parameter in `Theil`

is 0 Theil's entropy measure is
computed, for every other value Theil's second measure is
computed.

`ineq(x, type="var")`

and `var.coeff(x)`

respectively
compute the coefficient of variation, while
`ineq(x,type="square.var")`

and `var.coeff(x, square=TRUE)`

compute the squared coefficient of variation.

`entropy`

computes the generalized entropy, which is for
parameter 1 equal to Theil's entropy coefficient and for parameter
0 equal to the second measure of Theil.

F A Cowell: Measuring Inequality, 1995 Prentice Hall/Harvester Wheatshef,

Marshall / Olkin: Inequalities: Theory of Majorization and Its Applications, New York 1979 (Academic Press).

`conc`

, `pov`

```
# generate vector (of incomes)
x <- c(541, 1463, 2445, 3438, 4437, 5401, 6392, 8304, 11904, 22261)
# compute Gini coefficient
ineq(x)
# compute Atkinson coefficient with parameter=0.5
ineq(x, parameter=0.5, type="Atkinson")
```

Run the code above in your browser using DataCamp Workspace