## You need the biclust package for this
if (FALSE) {
if (require(biclust)) {
set.seed(1)
data <- isa.in.silico()
modules <- isa(data[[1]])
bc <- isa.biclust(modules)
## A heatmap
drawHeatmap(data[[1]], bc, 1)
## A "bubble" plot
bubbleplot(data[[1]], bc)
## Compare values inside and outside the bicluster
plotclust(bc, data[[1]])
## Plot profiles of bicluster elements
parallelCoordinates(data[[1]], bc, number=1)
## Coherence measures vs. ISA robustness
cV <- sapply(seq(bc@Number), function(x)
constantVariance(data[[1]], bc, x, dimension="both"))
aV <- sapply(seq(bc@Number), function(x)
additiveVariance(data[[1]], bc, x, dimension="both"))
mV <- sapply(seq(bc@Number), function(x)
multiplicativeVariance(data[[1]], bc, x, dimension="both"))
sV <- sapply(seq(bc@Number), function(x)
signVariance(data[[1]], bc, x, dimension="both"))
rob <- robustness(isa.normalize(data[[1]]), modules$rows,
modules$columns)
cor( cbind(cV, aV, mV, sV, rob) )
}
}
Run the code above in your browser using DataLab