library (BMA)
library (iterativeBMAsurv)
data(trainData)
data(trainSurv)
data(trainCens)
## Training phase: select relevant genes
## Assumes the training data is in sorted order with the desired number of genes
ret.bic.surv <- iterateBMAsurv.train.wrapper (x=trainData, surv.time=trainSurv, cens.vec=trainCens)
## Produce an image plot to visualize the selected genes and models
imageplot.iterate.bma.surv (ret.bic.surv$obj)Run the code above in your browser using DataLab