library(BMA)
library(iterativeBMAsurv)
data(trainData)
data(trainSurv)
data(trainCens)
## Start by ranking and sorting the genes; in this case we use the Cox Proportional Hazards Model
sorted.genes <- singleGeneCoxph(trainData, trainSurv, trainCens)
## Write top 100 genes to file
sorted.top.genes <- printTopGenes(retMatrix=sorted.genes, 100, trainData)
## The file, 'sorted_topCoxphGenes_100', is now in the working R directory.Run the code above in your browser using DataLab