This is an auxiliary function to calculate predictions and results
when using the h2o_automl()
function.
h2o_results(
h2o_object,
test,
train,
y = "tag",
which = 1,
model_type,
target = "auto",
ignored = c(),
plots = TRUE,
project = NULL,
seed = 0,
quiet = FALSE
)
H2O Leaderboard (H2OFrame/H2OAutoML) or Model (h2o)
Dataframe. Must have the same columns
Character. Name of the independent variable
Integer. Which model to select from leaderboard
Character. Select "Classifier" or "Regression"
Value. Which is your target positive value? If set to 'auto', the target with largest mean(score) will be selected. Change the value to overwrite. Only used when binary categorical model.
Character vector. Which columns were ignored?
Boolean. Create plots objects?
Character. Your project's name
Integer. Set a seed for reproducibility. AutoML can only guarantee reproducibility if max_models is used because max_time is resource limited.
Boolean. Quiet messages, warnings, recommendations?
Other Machine Learning:
ROC()
,
clusterKmeans()
,
conf_mat()
,
export_results()
,
gain_lift()
,
h2o_automl()
,
h2o_predict_API()
,
h2o_predict_MOJO()
,
h2o_predict_binary()
,
h2o_predict_model()
,
h2o_selectmodel()
,
impute()
,
iter_seeds()
,
lasso_vars()
,
model_metrics()
,
msplit()