lad(X, y, numdir = NULL, nslices = NULL, numdir.test = FALSE, ...)n rows of observations and p columns of predictors. The predictors are assumed to have a continuous distribution.n observations, possibly categorical or continuous. It is assumed categorical if nslices=NULL.y is continuous, and must be less than $n$. It is used to discretize the continuous response.FALSE, core computes the reduction for the specific number of directions numdir. If TRUE, it does the computation of the reduction for the numdir directions, from 0 to numdGrassmannOptim.ldr. The output depends on the argument numdir.test. If numdir.test=TRUE, a list of matrices is provided corresponding to the numdir values (1 through numdir) for each of the parameters $\Gamma$, $\Delta$, and $\Delta_y$; otherwise, a single list of matrices for a single value of numdir.
The output of loglik, aic, bic, numpar are vectors of numdir elements if numdir.test=TRUE, and scalars otherwise. Following are the components returned:core, pfcdata(flea)
fit <- lad(X=flea[,-1], y=flea[,1], numdir=2, numdir.test=TRUE)
summary(fit)
plot(fit)Run the code above in your browser using DataLab