Learn R Programming

lestat (version 1.9)

mnormalexpgamma: A Multivariate Normal-ExpGamma Distribution

Description

Creates an object representing a multivariate Normal-ExpGamma distribution. If \((x,y)\) has a multivariate Normal-ExpGamma distribution, then the marginal distribution of \(y\) is an ExpGamma distribution, and the conditional distribution of \(x\) given \(y\) is multivariate normal.

Usage

mnormalexpgamma(mu=c(0,0), P, alpha, beta)

Arguments

mu

The mu parameter. It must be a vector of length at least 2. The default value is (0,0).

P

The P parameter.

alpha

The alpha parameter.

beta

The beta parameter.

Value

A multivariate Normal-ExpGamma probability distribution.

Details

If \((x,y)\) has a multivariate Normal-ExpGamma distribution with parameters \(\mu\), \(P\), \(\alpha\), and \(\beta\), then the marginal distribution of \(y\) has an ExpGamma distribution with parameters \(\alpha\), \(\beta\), and -2, and conditionally on \(y\), \(x\) has a multivariate normal distribution with expectation \(\mu\) and precision matrix \(e^{-2y}P\). The probability density is proportional to $$ f(x,y)=\exp(-(2\alpha + k)y - e^{-2y}(\beta + (x-\mu)^tP(x-\mu)/2)) $$ where \(k\) is the dimension.

See Also

gamma,normal,expgamma, normalgamma,normalexpgamma mnormal,mnormalgamma

Examples

Run this code
# NOT RUN {
plot(mnormalexpgamma(alpha=3, beta=3))
# }

Run the code above in your browser using DataLab