Learn R Programming

lmomco (version 2.3.1)

pdfkur: Probability Density Function of the Kumaraswamy Distribution

Description

This function computes the probability density of the Kumaraswamy distribution given parameters (\(\alpha\) and \(\beta\)) computed by parkur. The probability density function is $$f(x) = \alpha\beta x^{\alpha - 1}(1-x^\alpha)^{\beta-1} \mbox{,}$$ where \(f(x)\) is the nonexceedance probability for quantile \(x\), \(\alpha\) is a shape parameter, and \(\beta\) is a shape parameter.

Usage

pdfkur(x, para)

Arguments

x

A real value vector.

para

The parameters from parkur or vec2par.

Value

Probability density (\(f\)) for \(x\).

References

Jones, M.C., 2009, Kumaraswamy's distribution---A beta-type distribution with some tractability advantages: Statistical Methodology, v. 6, pp. 70--81.

See Also

cdfkur, quakur, lmomkur, parkur

Examples

Run this code
# NOT RUN {
  lmr <- lmoms(c(0.25, 0.4, 0.6, 0.65, 0.67, 0.9))
  kur <- parkur(lmr)
  x <- quakur(0.5,kur)
  pdfkur(x,kur)
# }

Run the code above in your browser using DataLab