rmvlogis(n, thetas, IRT = TRUE, link = c("logit", "probit"),
distr = c("normal", "logistic", "log-normal", "uniform"),
z.vals = NULL)
TRUE
thetas
are under the IRT parameterization.
See Details for more info.n
providing the values of the latent variable (ability) to be used
in the simulation of the dichotomous responses; if specified the value of distr
is ignored.n
rows and columns the number of items, containing the simulated binary variates.IRT = TRUE
$$\pi_i = c_i + (1 - c_i) g(\beta_{2i} (z - \beta_{1i})),$$ whereas if IRT = FALSE
$$\pi_i = c_i + (1 - c_i) g(\beta_{1i} +
\beta_{2i} z),$$ $z$ denotes the latent variable,
$\beta_{1i}$ and $\beta_{2i}$ are the first and second columns of thetas
, respectively, and $g()$
is the link function. If thetas
is a three-column matrix then the third column should contain the guessing
parameters $c_i$'s.ltm
,
rasch
,
tpm
# 10 response patterns under a Rasch model
# with 5 items
rmvlogis(10, cbind(seq(-2, 2, 1), 1))
Run the code above in your browser using DataLab