The protein transduction equations model a biochemical reaction involving a signaling protein that degrades over time. The system components \(X = (S, S_d, R, S_R, R_{pp})\) represent the levels of signaling protein, its degraded form, inactive state of \(R\), \(S-R\) complex, and activated state of \(R\).
\(S\), \(S_d\), \(R\), \(S_R\) and \(R_{pp}\) are governed by the following differential equations:
$$ \frac{dS}{dt} = -k_1 \cdot S -k_2 \cdot S \cdot R + k_3 \cdot S_R $$
$$ \frac{dS_d}{dt} = k_1 \cdot S $$
$$ \frac{dR}{dt} = -k_2 \cdot S \cdot R + k_3 \cdot S_R + \frac{V \cdot R_{pp}}{K_m + R_{pp}} $$
$$ \frac{dS_R}{dt} = k_2 \cdot S \cdot R - k_3 \cdot S_R - k_4 \cdot S_R $$
$$ \frac{dR_{pp}}{dt} = k_4 \cdot S_R - \frac{V \cdot R_{pp}}{K_m + R_{pp}}$$
where \(\theta = (k_1, k_2, k_3,k_4, V, K_m)\) are system parameters.