Last chance! 50% off unlimited learning
Sale ends in
simE(parameters, n, seed = 0, ...)
simV(parameters, n, seed = 0, ...)
simEII(parameters, n, seed = 0, ...)
simVII(parameters, n, seed = 0, ...)
simEEI(parameters, n, seed = 0, ...)
simVEI(parameters, n, seed = 0, ...)
simEVI(parameters, n, seed = 0, ...)
simVVI(parameters, n, seed = 0, ...)
simEEE(parameters, n, seed = 0, ...)
simEEV(parameters, n, seed = 0, ...)
simVEV(parameters, n, seed = 0, ...)
simVVV(parameters, n, seed = 0, ...)
do.call
.n
observations simulated from the specified MVN
mixture model."modelName"
A character string indicating the variance model used for
the simulation.do.call
, allowing the output of e.g. mstep
, em
me
, Mclust
, to be passed directly without the need
to specify individual parameters as arguments.sim
,
Mclust
,
mstepE
,
do.call
d <- 2
G <- 2
scale <- 1
shape <- c(1, 9)
O1 <- diag(2)
O2 <- diag(2)[,c(2,1)]
O <- array(cbind(O1,O2), c(2, 2, 2))
O
variance <- list(d= d, G = G, scale = scale, shape = shape, orientation = O)
mu <- matrix(0, d, G) ## center at the origin
simdat <- simEEV(n=200,parameters=list(pro=c(1,1),mean=mu,variance=variance))
cl <- simdat[,1]
sigma <- array(apply(O, 3, function(x,y) crossprod(x*y),
y = sqrt(scale*shape)), c(2,2,2))
paramList <- list(mu = mu, sigma = sigma)
coordProj( simdat, paramList = paramList, classification = cl)
Run the code above in your browser using DataLab