Learn R Programming

medfate (version 0.8.2)

photo: Photosynthesis submodel functions

Description

Set of functions used in the calculation of photosynthesis.

Usage

photo_GammaTemp(leaf_temp)
photo_KmTemp(leaf_temp, Oi = 209)
photo_VmaxTemp(Vmax298, leaf_temp)
photo_JmaxTemp(Jmax298, leaf_temp)
photo_electronLimitedPhotosynthesis(Q, Ci, GT, Jmax)
photo_rubiscoLimitedPhotosynthesis(Ci, GT, Km, Vmax)
photo_photosynthesis(Q, Catm, Gc, leaf_temp, Vmax298, Jmax298, verbose = FALSE)
photo_leafPhotosynthesisFunction(E, Catm, Patm, Tair, vpa, u, 
                             absRad, Q, Vmax298, Jmax298, Gwmin, Gwmax,
                             leafWidth = 1.0, refLeafArea = 1, verbose = FALSE)
photo_sunshadePhotosynthesisFunction(E, Catm, Patm, Tair, vpa, 
                                     SLarea, SHarea, u, 
                                     absRadSL, absRadSH, QSL, QSH, 
                                     Vmax298SL, Vmax298SH, Jmax298SL, Jmax298SH, 
                                     Gwmin, Gwmax, leafWidth = 1.0, verbose = FALSE)
photo_multilayerPhotosynthesisFunction(E, Catm, Patm, Tair, vpa, 
                                      SLarea, SHarea, u, 
                                      absRadSL, absRadSH, QSL, QSH, 
                                      Vmax298, Jmax298, Gwmin, Gwmax, leafWidth = 1.0, 
                                      verbose = FALSE)

Arguments

leaf_temp

Leaf temperature (in <U+00BA>C).

Oi

Oxigen concentration (mmol*mol-1).

Vmax298, Vmax298SL, Vmax298SH

Maximum Rubisco carboxylation rate per leaf area at 298<U+00BA>K (i.e. 25 <U+00BA>C) (micromol*s-1*m-2) (for each canopy layer in the case of photo_multilayerPhotosynthesisFunction). 'SH' stands for shade leaves, whereas 'SL' stands for sunlit leaves.

Jmax298, Jmax298SL, Jmax298SH

Maximum electron transport rate per leaf area at 298<U+00BA>K (i.e. 25 <U+00BA>C) (micromol*s-1*m-2) (for each canopy layer in the case of photo_multilayerPhotosynthesisFunction). 'SH' stands for shade leaves, whereas 'SL' stands for sunlit leaves.

Q

Active photon flux density (micromol * s-1 * m-2).

Ci

CO2 internal concentration (micromol * mol-1).

GT

CO2 saturation point corrected by temperature (micromol * mol-1).

Jmax

Maximum electron transport rate per leaf area (micromol*s-1*m-2).

Km

Km = Kc*(1.0+(Oi/Ko)) - Michaelis-Menten term corrected by temperature (in micromol * mol-1).

Vmax

Maximum Rubisco carboxylation rate per leaf area (micromol*s-1*m-2).

Catm

CO2 air concentration (micromol * mol-1).

Gc

CO2 leaf (stomatal) conductance (mol * s-1 * m-2).

E

Transpiration flow rate per leaf area (mmol*s-1*m-2).

Patm

Atmospheric air pressure (in kPa).

Tair

Air temperature (in <U+00BA>C).

vpa

Vapour pressure deficit (in kPa).

u

Wind speed above the leaf boundary (in m/s) (for each canopy layer in the case of photo_multilayerPhotosynthesisFunction).

absRad

Absorbed long- and short-wave radiation (in W*m^-2).

leafWidth

Leaf width (in cm).

refLeafArea

Leaf reference area.

Gwmin, Gwmax

Minimum and maximum leaf water conductance (i.e. cuticular and maximum stomatal conductance) (mol * s-1 * m-2).

verbose

Boolean flag to indicate console output.

SLarea, SHarea

Leaf area index of sunlit/shade leaves (for each canopy layer in the case of photo_multilayerPhotosynthesisFunction).

absRadSL, absRadSH

Instantaneous absorbed radiation (W<U+00B7>m-2) per unit of sunlit/shade leaf area (for each canopy layer in the case of photo_multilayerPhotosynthesisFunction).

QSL, QSH

Active photon flux density (micromol * s-1 * m-2) per unit of sunlit/shade leaf area (for each canopy layer in the case of photo_multilayerPhotosynthesisFunction).

Value

Values returned for each function are:

  • photo_GammaTemp: CO2 compensation concentration (micromol * mol-1).

  • photo_KmTemp: Michaelis-Menten coefficients of Rubisco for Carbon (micromol * mol-1) and Oxigen (mmol * mol-1).

  • photo_VmaxTemp: Temperature correction of Vmax298.

  • photo_JmaxTemp: Temperature correction of Jmax298.

  • photo_electronLimitedPhotosynthesis: Electron-limited photosynthesis (micromol*s-1*m-2) following Farquhar et al. (1980).

  • photo_rubiscoLimitedPhotosynthesis: Rubisco-limited photosynthesis (micromol*s-1*m-2) following Farquhar et al. (1980).

  • photo_photosynthesis: Calculates gross photosynthesis (micromol*s-1*m-2) following (Farquhar et al. (1980) and Collatz et al (1991).

  • photo_leafPhotosynthesisFunction: Returns a data frame with the following columns:

    • LeafTemperature: Leaf temperature (<U+00BA>C).

    • LeafVPD: Leaf vapor pressure deficit (kPa).

    • WaterVaporConductance: Leaf vapor conductance (mol * s-1 * m-2).

    • Photosynthesis: Gross photosynthesis (micromol*s-1*m-2).

    • NetPhotosynthesis: Net photosynthesis, after discounting autotrophic respiration (micromol*s-1*m-2).

  • photo_sunshadePhotosynthesisFunction and photo_multilayerPhotosynthesisFunction: Return a data frame with the following columns:

    • Photosynthesis: Gross photosynthesis (micromol*s-1*m-2).

    • NetPhotosynthesis: Net photosynthesis, after discounting autotrophic respiration (micromol*s-1*m-2).

Details

Details of the photosynthesis submodel are given in a vignette.

References

Bernacchi, C. J., E. L. Singsaas, C. Pimentel, A. R. Portis, and S. P. Long. 2001. Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell and Environment 24:253<U+2013>259.

Collatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry. 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agricultural and Forest Meteorology 54:107<U+2013>136.

Farquhar, G. D., S. von Caemmerer, and J. A. Berry. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78<U+2013>90.

Leuning, R. 2002. Temperature dependence of two parameters in a photosynthesis model. Plant, Cell and Environment 25:1205<U+2013>1210.

Sperry, J. S., M. D. Venturas, W. R. L. Anderegg, M. Mencuccini, D. S. Mackay, Y. Wang, and D. M. Love. 2016. Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost. Plant Cell and Environment.

See Also

hydraulics_supplyFunctionNetwork, biophysics_leafTemperature, spwb