clust.suite: Determination of Suitable Clustering Algorithm for Metagenomics Data
Description
This function will give the best clustering algorithm for a given metagenomics data based on silhouette index for kmeans clustering, kmedoids clustering, fuzzy kmeans clsutering, DBSCAN clustering and hierarchical clsutering.
Usage
clust.suite(data, k, eps, minpts)
Value
kmeans
Output of kmeans clustering
kmedoids
Output of kmedoids clustering
fkmeans
Output of fuzzy kmeans clustering
dbscan
Output of dbscan clustering
hierarchical
Output of hierarchical clustering
silhouette.kmeans
Silhouette plot of kmeans clustering
silhouette.kmedoids
Silhouette plot of kmedoids clustering
silhouette.fkmeans
Silhouette plot of fuzzy kmeans clustering
silhouette.dbscan
Silhouette plot of dbscan clustering
silhouette.hierarchical
Silhouette plot of hierarchical clustering
best.clustering.method
Best clustering algorithm based on silhouette index
silhouette.summary
Average silhouette width of each clustering algorithm
Arguments
data
Feature matrix consisting of different genomic features.Each row represents features corresponding to a particular individual or contig and each column represents different genomic features.
k
Optimum number of clusters
eps
Radius value for DBSCAN clustering
minpts
Minimum point value of DBSCAN clustering
Author
Dipro Sinha <diprosinha@gmail.com>,Sayanti Guha Majumdar, Anu Sharma, Dwijesh Chandra Mishra