Learn R Programming

meteR (version 1.2)

meteESF: meteESF

Description

meteESF Calculates the ``ecosystem structure function'' $R(n,\epsilon)$ which forms the core of the Maximum Entropy Theory of Ecology

Usage

meteESF(spp, abund, power, S0 = NULL, N0 = NULL, E0 = NULL, minE)

Arguments

spp
A vector of species names
abund
A vector of abundances
power
A vector of metabolic rates
S0
Total number of species
N0
Total number of individuals
E0
Total metabolic rate; defaults to N0*1e6 if not specified or calculated from power to allow one to fit models that do not depend on metabolic rates
minE
Minimum possible metabolic rate

Value

An object of class meteESF with elements
data
The data used to construct the ESF
emin
The minimum metabolic rate used to rescale metabolic rates
La
Vector of Lagrange multipliers
La.info
Termination information from optimization procedure
state.var
State variables used to constrain entropy maximization
Z
Normalization constant for ESF

Details

Uses either data or state variables to calculate the Ecosystem Structure Function (ESF). power nor E0 need not be specified; if missing an arbitrarily large value is assigned to E0 (N0*1e5) such that it will minimally affect estimation of Lagrange multipliers. Consider using sensitivity analysis to confirm this assumption. Examples show different ways of combining data and state variables to specify constraints

References

Harte, J. 2011. Maximum entropy and ecology: a theory of abundance, distribution, and energetics. Oxford University Press.

See Also

metePi

Examples

Run this code
## case where complete data availible
esf1 <- meteESF(spp=arth$spp,
                abund=arth$count,
                power=arth$mass^(.75),
                minE=min(arth$mass^(.75)))
esf1

## excluding metabolic rate data
esf2 <- meteESF(spp=arth$spp,
                abund=arth$count)
esf2

## using state variables only
esf3 <- meteESF(S0=50, N0=500, E0=5000)
esf3
esf4 <- meteESF(S0=50, N0=500)
esf4

Run the code above in your browser using DataLab