50% off | Unlimited Data & AI Learning

Last chance! 50% off unlimited learning

Sale ends in


meteR (version 1.2)

mse: Computes mean squared error for rank or cdf

Description

mse.meteDist computes mean squared error for rank or cdf between METE prediction and data

Usage

mse(x, ...)
"mse"(x, type = c("rank", "cumulative"), relative = TRUE, log = FALSE, ...)

Arguments

x
a meteDist object
...
arguments to be passed to methods
type
'rank' or 'cumulative'
relative
logical; if true use relative MSE
log
logical; if TRUE calculate MSE on logged distirbution. If FALSE use arithmetic scale.

Value

numeric; the value of the mean squared error.

Details

See Examples.

References

Harte, J. 2011. Maximum entropy and ecology: a theory of abundance, distribution, and energetics. Oxford University Press.

See Also

mseZ.meteDist

Examples

Run this code
data(arth)
esf1 <- meteESF(spp=arth$spp,
                abund=arth$count,
                power=arth$mass^(.75),
                minE=min(arth$mass^(.75)))
sad1 <- sad(esf1)
mse(sad1, type='rank', relative=FALSE)
ebar1 <- ebar(esf1)
mse(ebar1)

Run the code above in your browser using DataLab