Computes initial values for different MIDAS regression model specifications.
get_start_midas(
y,
X,
z = NULL,
loss = c("mse", "als", "rq"),
weight,
polynomial,
num.evals = 1000,
num.coef = 10,
seed = NULL,
tau = tau
)
predictor variable lags in MIDAS data format.
autoregressive lags of response variable (default NULL, DL-MIDAS model is computed).
polynomial specification.
MIDAS weight function (depends on polynomial
).
MIDAS polynomial specification.
number of objective function evaluations using random starting parameter values.
number of best coefficients to use as starting values in nonlinear optimization.
value used in set.seed for randomly drawing initial starting values.
quantile level for als and rq regressions.
parameter vector from midas_estimate
.
returns num.coef
number of initial parameter values.
For a given loss function and MIDAS weight function specification, computes num.evals
number of random initial values and evaluates the objective function at those parameters.
Function retains num.coef
of best in terms of fit initial starting values, which are then feed into optimization algorithms.