Learn R Programming

⚠️There's a newer version (0.1.10) of this package.Take me there.

midasml (version 0.0.6)

Estimation and Prediction Methods for High-Dimensional Mixed Frequency Time Series Data

Description

The 'midasml' estimation and prediction methods for high dimensional time series regression models under mixed data sampling data structures using structured-sparsity penalties and orthogonal polynomials. For more information on the 'midasml' approach see Babii, Ghysels, and Striaukas (2021, JBES forthcoming) . Functions that compute MIDAS data structures were inspired by MIDAS 'Matlab' toolbox (v2.3) written by Eric Ghysels.

Copy Link

Version

Install

install.packages('midasml')

Monthly Downloads

892

Version

0.0.6

License

GPL (>= 2)

Maintainer

Jonas Striaukas

Last Published

March 12th, 2021

Functions in midasml (0.0.6)

apply_transform

Time series matrix transformation
dateMatch

Match dates
diff_time_mf

Compute difference in two dates.
cvfolds

Computes cross-validation folds.
beta_w

Beta density polynomial weights
date_vec

Transform date vector to numeric matrix
als_loss

Asymmetric least squares loss for ARDL-MIDAS or DL-MIDAS regression
data_freq

Identify data frequency
cpp_sgl_fitpath

Computes a path solution for \(\lambda\) and fixed \(\gamma\) values
expalmon_w

Exponential Almon polynomial weights
lb

Legendre polynomials shifted to [a,b]
market_ret

SNP500 returns
midas_ardl

ARDL-MIDAS regression
fastals

Computes fast ALS solution
midasml_forecast

MIDAS ML regression prediction function
macro_midasml

GDP nowcasting using midasML approach example data
mixed_freq_data

MIDAS data structure
midas_forecast

MIDAS regression prediction function
plot_weights

MIDAS weights plot function
fastols

Computes fast OLS solution
path_calc_panel

Computes a sequence of lambda parameters for the sg-LASSO panel regression
midas_pr

Computes fast DL-MIDAS profiling solution
cpp_sgl_fit

Computes a single solution for \(\lambda_1\) and \(\lambda_2\) values
fastrq

Computes fast rq solution
gb

Gegenbauer polynomials shifted to [a,b]
mixed_freq_data_mhorizon

MIDAS data structure
mixed_freq_data_single

MIDAS data structure
predict.panel_sgl

Computes prediction for the sg-LASSO panel regression model
updatecvmsd

Updates the cross-validation error estimates
midas_dl

DL-MIDAS regression
monthEnd

End of the month date
reg_sgl

Linear sg-LASSO regression
midas_estimate

MIDAS regression estimation function
mse_loss

Mean squared error loss for ARDL-MIDAS or DL-MIDAS regression
us_rgdp

US real GDP data with several high-frequency predictors
mode_midasml

Compute mode of a vector
monthBegin

Beginning of the month date
get_start_midas

MIDAS regression function for initial values
transform_dt

Time series vector transformation
sgl_fit

sg-LASSO regression
panel_sgl

Panel sg-LASSO regression model
getmin_cpp

Computes optimal \(\lambda\) for cross-validation output.
midasar_pr

Computes fast ARDL-MIDAS profiling solution
qtarget.sort_midasml

High-dimensional mixed frequency data sort function
path_calc

Computes a sequence of lambda parameters for the mse sg-LASSO regression
midasml-package

midasml
lag_num

Compute the number of lags
rbeta_w

Restricted Beta density polynomial weights
predict.reg_sgl

Computes prediction for the sg-LASSO linear regression
rq_loss

Quantile regression loss for ARDL-MIDAS or DL-MIDAS regression