Learn R Programming

midasml (version 0.0.6)

midas_estimate: MIDAS regression estimation function

Description

Estimates a single variate MIDAS model.

Usage

midas_estimate(
  est.y,
  est.x,
  est.lag.y,
  est.xdate,
  polynomial,
  loss,
  num.evals,
  num.coef,
  startx_all = NULL,
  seed = NULL,
  ...
)

Arguments

est.y

response variable.

est.x

predictor variable lags in MIDAS data format.

est.lag.y

autoregressive lags of response variable (if NULL DL-MIDAS model is estimated).

est.xdate

predictor variable lag dates in MIDAS data format.

polynomial

MIDAS lag polynomial specification.

loss

loss function.

num.evals

number of objective function evaluations using random starting parameter values.

num.coef

number of best coefficients to use as starting values in nonlinear optimization.

startx_all

starting values to feed into optimization algorithm.

seed

value used in set.seed for randomly drawing initial starting values.

...

optional parameters to feed into other functions.

Value

returns estimates of coefficient vector for a desired model specification.

Details

For specficiation details, midas_dl or midas_ardl function descriptions for more details.