Learn R Programming

midasr (version 0.2)

midas_r_ic_table: Create a weight and lag selection table for MIDAS regression model

Description

Creates a weight and lag selection table for MIDAS regression model with given information criteria and minimum and maximum lags.

Usage

midas_r_ic_table(formula, ...)

## S3 method for class 'default': midas_r_ic_table(formula, data = NULL, start = NULL, table, IC = c("AIC", "BIC"), test = c("hAh.test"), Ofunction = "optim", user.gradient = FALSE, showprogress = TRUE, ...)

Arguments

formula
the formula for MIDAS regression, the lag selection is performed for the last MIDAS lag term in the formula
data
a list containing data with mixed frequencies
start
the starting values for optimisation excluding the starting values for the last term
table
an wls_table object, see expand_weights_lags
IC
the names of information criteria which to compute
test
the names of statistical tests to perform on restricted model, p-values are reported in the columns of model selection table
Ofunction
see midasr
user.gradient
showprogress
logical, TRUE to show progress bar, FALSE for silent evaluation
...
additional parameters to optimisation function, see midas_r

Value

  • a midas_r_ic_table object which is the list with the following elements:
  • tablethe table where each row contains calculated information criteria for both restricted and unrestricted MIDAS regression model with given lag structure
  • candlistthe list containing fitted models
  • ICthe argument IC

Details

This function estimates models sequentially increasing the midas lag from kmin to kmax and varying the weights of the last term of the given formula

Examples

Run this code
data("USunempr")
data("USrealgdp")
y <- diff(log(USrealgdp))
x <- window(diff(USunempr),start=1949)
trend <- 1:length(y)


mwlr <- midas_r_ic_table(y~trend+fmls(x,12,12,nealmon),
                   table=list(x=list(weights=
                   as.list(c("nealmon","nealmon","nbeta")),
                   lags=list(0:4,0:5,0:6),
                   starts=list(rep(0,3),rep(0,3,),c(1,1,1,0)))))

mwlr

Run the code above in your browser using DataLab