Learn R Programming

⚠️There's a newer version (0.9) of this package.Take me there.

midasr (version 0.2)

Mixed Data Sampling Regression

Description

Econometric methods for mixed frequency time series data analysis

Copy Link

Version

Install

install.packages('midasr')

Monthly Downloads

1,237

Version

0.2

License

MIT + file LICENCE

Maintainer

Vaidotas Zemlys

Last Published

January 7th, 2014

Functions in midasr (0.2)

USrealgdp

US annual gross domestic product in billions of chained 2005 dollars
imidas_r.imidas_r

Restricted MIDAS regression with I(1) regressors
midas_r.fit

Fit restricted MIDAS regression
amweights

Weights for aggregates based MIDAS regressions
mls_coef

Return the coefficients for fmls variables
nakagamip.gradient

Gradient function for normalized Nakagami probability density function MIDAS weights specification Calculate gradient function for normalized Nakagami probability density function specification of MIDAS weights.
hf_lags_table

Create a high frequency lag selection table for MIDAS regression model
get_estimation_sample

Get the data which was used to etimate MIDAS regression
weight_coef

Return the restricted coefficients generated by restriction function(s)
hAh.test

Test restrictions on coefficients of MIDAS regression
hAhr.test

Test restrictions on coefficients of MIDAS regression using robust version of the test
dmls

MIDAS lag structure for unit root processes
simplearma.sim

Simulate AR(1) or MA(1) model
midasr-package

Estimating and testing MIDAS regression
expand_amidas

Create table of weights, lags and starting values for Ghysels weight schema
forecast

Forecast MIDAS regression
gompertzp

Normalized Gompertz probability density function MIDAS weights specification Calculate MIDAS weights according to normalized Gompertz probability density function specification
fmls

Full MIDAS lag structure
midas_coef

Return the coefficients of MIDAS regression
split_data

Split mixed frequency data into in-sample and out-of-sample
midas_r_ic_table

Create a weight and lag selection table for MIDAS regression model
polystep

Step function specification for MIDAS weights
lcauchyp.gradient

Gradient function for normalized log-Cauchy probability density function MIDAS weights specification Calculate gradient function for normalized log-Cauchy probability density function specification of MIDAS weights.
midas.sim

Simulate MIDAS regression response variable
almonp

Almon polynomial MIDAS weights specification
weights_table

Create a weight function selection table for MIDAS regression model
midas.auto.sim

Simulate autoregressive MIDAS model
gompertzp.gradient

Gradient function for normalized Gompertz probability density function MIDAS weights specification Calculate gradient function for normalized Gompertz probability density function specification of MIDAS weights.
lcauchyp

Normalized log-Cauchy probability density function MIDAS weights specification Calculate MIDAS weights according to normalized log-Cauchy probability density function specification
imidas_r

Restricted MIDAS regression with I(1) regressors
+.lws_table

Combine lws_table objects
midas_r

Restricted MIDAS regression
mls

MIDAS lag structure
nbeta.gradient

Gradient function for normalized beta probability density function MIDAS weights specification Calculate gradient function for normalized beta probability density function specification of MIDAS weights.
midas_u

Estimate unrestricted MIDAS regression
weight_names

Return the names of restriction function(s)
midas_r_fast

Restricted MIDAS regression
amidas_table

Weight and lag selection table for aggregates based MIDAS regression model
nealmon

Normalized Exponential Almon lag MIDAS coefficients
deviance.midas_r

MIDAS regression model deviance
almonp.gradient

Gradient function for Almon polynomial MIDAS weights
nealmon.gradient

Gradient function for normalized exponential Almon lag weights
USunempr

US monthly unemployment rate
average_forecast

Average forecasts of MIDAS models
polystep.gradient

Gradient of step function specification for MIDAS weights
checkARstar

Check whether the MIDAS model is MIDAS-AR* model
modsel

Select the model based on given information criteria
prepmidas_r

Prepare necessary objects for fitting of the MIDAS regression
expand_weights_lags

Create table of weights, lags and starting values
deriv_tests

Check whether non-linear least squares restricted MIDAS regression problem has converged
lf_lags_table

Create a low frequency lag selection table for MIDAS regression model
check_mixfreq

Check data for MIDAS regression
select_and_forecast

Create table for different forecast horizons
rvsp500

Realized volatility of S&P500 index
prep_hAh

weight_param

Return the estimated hyper parameters of the weight function(s)
nakagamip

Normalized Nakagami probability density function MIDAS weights specification Calculate MIDAS weights according to normalized Nakagami probability density function specification
nbetaMT.gradient

Gradient function for normalized beta probability density function MIDAS weights specification (MATLAB toolbox compatible) Calculate gradient function for normalized beta probability density function specification of MIDAS weights.
agk.test

Andreou, Ghysels, Kourtellos LM test
predict.midas_r

Predict method for MIDAS regression fit
AICc

Compute AICc
midas_r.midas_r

Restricted MIDAS regression
nbeta

Normalized beta probability density function MIDAS weights specification Calculate MIDAS weights according to normalized beta probability density function specification
nbetaMT

Normalized beta probability density function MIDAS weights specification (MATLAB toolbox compatible) Calculate MIDAS weights according to normalized beta probability density function specification. Compatible with the specification in MATLAB toolbox.