Learn R Programming

midasr (version 0.2)

weights_table: Create a weight function selection table for MIDAS regression model

Description

Creates a weight function selection table for MIDAS regression model with given information criteria and weight functions.

Usage

weights_table(formula, data, start = NULL, IC = c("AIC", "BIC"),
  test = c("hAh.test"), Ofunction = "optim", user.gradient = FALSE, ...)

Arguments

formula
the formula for MIDAS regression, the lag selection is performed for the last MIDAS lag term in the formula
data
a list containing data with mixed frequencies
start
the starting values for optimisation
IC
the information criteria which to compute
test
the names of statistical tests to perform on restricted model, p-values are reported in the columns of model selection table
Ofunction
see midasr
user.gradient
...
additional parameters to optimisation function, see midas_r

Value

  • a midas_r_ic_table object which is the list with the following elements:
  • tablethe table where each row contains calculated information criteria for both restricted and unrestricted MIDAS regression model with given lag structure
  • candlistthe list containing fitted models
  • ICthe argument IC

Details

This function estimates models sequentially increasing the midas lag from kmin to kmax of the last term of the given formula

Examples

Run this code
data("USunempr")
data("USrealgdp")
y <- diff(log(USrealgdp))
x <- window(diff(USunempr),start=1949)
trend <- 1:length(y)
mwr <- weights_table(y~trend+fmls(x,12,12,nealmon),
                     start=list(x=list(nealmon=rep(0,3),
                     nbeta=c(1,1,1,0))))

mwr

Run the code above in your browser using DataLab