Learn R Programming

mirt (version 1.1)

itemfit: Item fit statistics

Description

itemfit calculates the Zh values from Drasgow, Levine and Williams (1985), $\chi^2$ values for unidimensional models, and S-X2 statistics for unidimensional models (Kang & Chen, 2007; Orlando & Thissen, 2000). For Rasch, partial credit, and rating scale models infit and outfit statistics are also produced.

Usage

itemfit(x, Zh = TRUE, X2 = FALSE, group.size = 150,
    mincell = 1, S_X2.tables = FALSE,
    empirical.plot = NULL, method = "EAP", ...)

Arguments

x
a computed model object of class ExploratoryClass, ConfirmatoryClass, or MultipleGroupClass
Zh
logical; calculate Zh and associated statistics (infit/outfit)? Disable this is you are only interested in computing the S-X2 quickly
X2
logical; calculate the X2 statistic for unidimensional models?
mincell
the minimum expected cell size to be used in the S-X2 computations. Tables will be collapsed across items first if polytomous, and then across scores if necessary
S_X2.tables
logical; return the tables in a list format used to compute the S-X2 stats?
group.size
approximate size of each group to be used in calculating the $\chi^2$ statistic
empirical.plot
a single numeric value or character of the item name indicating which item to plot (via itemplot) and overlay with the empirical $\theta$ groupings. Only applicable when type = 'X2'. The default is NULL, ther
method
type of factor score estimation method. See fscores for more detail
...
additional arguments to be passed to fscores()

References

Drasgow, F., Levine, M. V., & Williams, E. A. (1985). Appropriateness measurement with polychotomous item response models and standardized indices. Journal of Mathematical and Statistical Psychology, 38, 67-86.

Kang, T. & Chen, Troy, T. (2007). An investigation of the performance of the generalized S-X2 item-fit index for polytomous IRT models. ACT

Orlando, M. & Thissen, D. (2000). Likelihood-based item fit indices for dichotomous item response theory models. Applied Psychological Measurement, 24, 50-64.

Reise, S. P. (1990). A comparison of item- and person-fit methods of assessing model-data fit in IRT. Applied Psychological Measurement, 14, 127-137.

See Also

personfit

Examples

Run this code
#make some data
set.seed(1234)
a <- matrix(rlnorm(20, meanlog=0, sdlog = .1),ncol=1)
d <- matrix(rnorm(20),ncol=1)
items <- rep('dich', 20)
data <- simdata(a,d, 2000, items)

x <- mirt(data, 1)
raschfit <- mirt(data, 1, itemtype='Rasch')
fit <- itemfit(x)
fit

itemfit(x, empirical.plot = 1) #empirical item plot
#method='ML' agrees better with eRm package
itemfit(raschfit, method = 'ML') #infit and outfit stats

#similar example to Kang and Chen 2007
a <- matrix(c(.8,.4,.7, .8, .4, .7, 1, 1, 1, 1))
d <- matrix(rep(c(2.0,0.0,-1,-1.5),10), ncol=4, byrow=TRUE)
dat <- simdata(a,d,2000, itemtype = rep('graded', 10)) - 1
head(dat)

mod <- mirt(dat, 1)
itemfit(mod)

mod2 <- mirt(dat, 1, 'Rasch')
itemfit(mod2)

#massive list of tables
tables <- itemfit(mod, S_X2.tables = TRUE)

#observed and expected total score patterns for item 1 (post collapsing)
tables$O[[1]]
tables$E[[1]]

Run the code above in your browser using DataLab