Learn R Programming

⚠️There's a newer version (1.44.0) of this package.Take me there.

mirt (version 1.1)

Multidimensional Item Response Theory

Description

Analysis of dichotomous and polytomous response data using unidimensional and multidimensional latent trait models under the Item Response Theory paradigm. Exploratory and confirmatory models can be estimated with quadrature (EM) or stochastic (MHRM) methods. Confirmatory bi-factor and two-tier analyses are available for modeling item testlets. Multiple group analysis and mixed effects designs also are available for detecting differential item functioning and modelling item and person covariates.

Copy Link

Version

Install

install.packages('mirt')

Monthly Downloads

7,762

Version

1.1

License

GPL (>= 2)

Issues

Pull Requests

Stars

Forks

Maintainer

Phil Chalmers

Last Published

December 20th, 2013

Functions in mirt (1.1)

boot.mirt

Calculate bootstrapped standard errors for estimated models
itemfit

Item fit statistics
Bock1997

Description of Bock 1997 data
fscores

Methods for Function fscores
createItem

Create a user defined item with correct generic functions
ExploratoryClass-class

Class "ExploratoryClass"
DIF

Differential item functioning tests
ConfirmatoryClass-class

Class "ConfirmatoryClass"
expand.table

Expand summary table of patterns and frequencies
MultipleGroupClass-class

Class "MultipleGroupClass"
fitIndices

Compute Extra Model Fit Indices
multipleGroup

Multiple Group Estimation
expected.item

Function to calculate expected value of item
mod2values

Convert an estimated mirt model to special data.frame
SingleGroupClass-class

Class "SingleGroupClass"
LSAT6

Description of LSAT6 data
PLCI.mirt

Compute profiled-likelihood confidence intervals
wald

Wald test for mirt models
calcLogLik

Monte Carlo Log-Likelihood Calculation
personfit

Person fit statistics
fitted-method

Compute fitted values
deAyala

Description of deAyala data
LSAT7

Description of LSAT7 data
print-method

Print the model objects
mirt.model

Specify model loadings
iteminfo

Function to calculate item information
mirt

Full-Information Item Factor Analysis (Multidimensional Item Response Theory)
randef

Compute random effects
DiscreteClass-class

Class "DiscreteClass"
Science

Description of Science data
mixedmirt

Mixed effects modeling for MIRT models
DTF

Differential test functioning statistics
itemGAM

Parametric smoothed regression lines for item response probability functions
anova-method

Compare nested models with likelihood-based statistics
plot-method

Plot various test implied functions from models
coef-method

Extract raw coefs from model object
extract.item

Extract an item object from mirt objects
bfactor

Full-Information Item Bi-factor and Two-Tier Analysis
SAT12

Description of SAT12 data
mirt-package

Full information maximum likelihood estimation of IRT models.
itemplot

Displays item surface and information plots
MixedClass-class

Class "MixedClass"
MDISC

Compute multidimensional discrimination index
imputeMissing

Imputing plausible data for missing values
read.mirt

Translate mirt parameters for plink package
MDIFF

Compute multidimensional difficulty index
mirtCluster

Define a parallel cluster object to be used in internal functions
probtrace

Function to calculate probability trace lines
summary-method

Summary of model object
extract.group

Extract a group from a multiple group mirt object
simdata

Simulate response patterns
marginal_rxx

Function to calculate the marginal reliability
expected.test

Function to calculate expected test score
residuals-method

Compute model residuals
M2

Compute the M2 model fit statistic
testinfo

Function to calculate test information
fixef

Compute latent regression fixed effect expected values
mdirt

Multidimensional discrete item response theory
key2binary

Score a test by converting response patterns to binary data
show-method

Show model object
averageMI

Collapse values from multiple imputation draws
SIBTEST

Simultaneous Item Bias Test (SIBTEST)
empirical_rxx

Function to calculate the empirical (marginal) reliability
extract.mirt

Extract various elements from estimated model objects
areainfo

Function to calculate the area under a selection of information curves
lagrange

Lagrange test for freeing parameters
logLik-method

Extract log-likelihood
empirical_plot

Function to generate empirical unidimensional item and test plots
vcov-method

Extract parameter variance covariance matrix
numerical_deriv

Compute numerical derivatives
empirical_ES

Empirical effect sizes based on latent trait estimates