Learn R Programming

mirt (version 1.1)

plot-method: Plot various test implied functions from models

Description

plot(x, y, type = 'info', npts = 50, theta_angle = 45, which.items = 1:ncol(x@data), rot = list(xaxis = -70, yaxis = 30, zaxis = 10), facet_items = FALSE, auto.key = TRUE, ...)

Arguments

x
an object of class ExploratoryClass, ConfirmatoryClass or MultipleGroupClass
type
type of plot to view; can be 'info' to show the test information function, 'infocontour' for the test information contours, 'SE' for the test standard error function, 'trace' and 'infotrace
theta_angle
numeric values ranging from 0 to 90 used in plot. If a vector is used then a bubble plot is created with the summed information across the angles specified (e.g., theta_angle = seq(0, 90, by=10))
npts
number of quadrature points to be used for plotting features. Larger values make plots look smoother
rot
allows rotation of the 3D graphics
which.items
numeric vector indicating which items to be used when plotting. Default is to use all available items
facet_items
logical; apply grid of plots accross items? If FALSE, items will be placed in one plot for each group
auto.key
logical parameter passed to the lattice package
...
additional arguments to be passed

Examples

Run this code
x <- mirt(Science, 1)
plot(x)
plot(x, type = 'trace')
plot(x, type = 'infotrace')
plot(x, type = 'infotrace', facet_items = TRUE)
plot(x, type = 'infoSE')

set.seed(1234)
group <- sample(c('g1','g2'), nrow(Science), TRUE)
x2 <- multipleGroup(Science, 1, group)
plot(x2)
plot(x2, type = 'trace')
plot(x2, type = 'trace', which.items = 1:2)
plot(x2, type = 'score')

x3 <- mirt(Science, 2)
plot(x3)
plot(x3, type = 'SE')

Run the code above in your browser using DataLab